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Chapter 1

Introduction

1.1. Introduction

Mathematical modeling is a popular tool used to predict or control an uncertain future. The complexities
of a real-world system are abstracted into variables linked by mathematical relationships that are hoped to
capture the essential behavior of the system.

Some models are merely descriptive, that is, they attempt only to predict the course of events based
on a set of assumptions. But many models incorporate control variables that can be adjusted to try to affect
the future. Such models are prescriptive rather than descriptive.

A paradigm from economics that is often used in prescriptive models is the assumption that the controls
are adjusted so as to maximize a utility function (or minimize a cost, which is effectively a negative utility).
This point or view makes many prescriptive models into constrained optimization models, which are of
the form min f(Z)(..)

subject to c(x) - 0

where z represents the control variables, f(x) is a "cost" that is to be minimized, arid c(x) 0 represents
the constraints imposed on the variables of the model by the structure of the system under study.

Since models of the general form (1.1.1) have become widely used, methods for solving them have been
intensively studied. A good general reference for practical modern methods of solution is Gill, Murray and
Wright (1981).

As the capacity and speed of computers have dramatically risen, our ability to solve larger and larger
models has also increased. But not all advances in methods are attributable to the existence of faster
machines. Since the time that the first optimization models were introduced, particularly after the advent of
linear programming in 1947 (sec Dantzig (1963)), it has been recognized that real-world problems are usually
specially structured. Clever algorithms can take advantage of special structures and speed up the solution of
optimization models. The increases in size and solution sped greatly exceed the improvements in computer
hardware.

One of the earliest and most important kinds of special structure that was recognized was sparsity.
Roughly speaking, sparsity means that a variable interacts directly with only a few other variables. Thus in
(1.1.1), sparsity would mean that most of the entries of the Jacobian of c are zero for all x. Sparsity tends
to appear naturally because most variables in an optimization model interact only with other variables that
are fairly "close" in either space or time. A classic example is a transportation network, where nodes of the
network interact only with their immediate neighbors.

Sparsity is exploited in two ways by solution methods. First, since most of the potential information
is zero, the nurmber of pieces or data that must be stored in the computer is drastically reduced. Second,
operations on sparse data call be done faster by exploiting sparsity. For example, in multiplying two sparse
matrices, products involving a zero need not be computed.

The importance of sparse methods is evidenced in many ways. Every commercial linear programming
code uses sparse matrix methods in the representation or the problem and for handling its bases. The most
recent Sparse Matrix Symposium attracted 119 researchers who listened to 60 presented papers. A keyword
search or the on-line Math Reviews on MATIIFILE turned up 413 reviewed papers on sparsity since 1972.

This the4is continues the trend of research into better ways of exploiting sparsity by considering two
different problems in which sparsity is crucial.

The first problem, discussed in Chapter 2, is to compute a finite-difference approximation of a sparse
Hessian niatrix with a minimum numtr of gradient evaluations. For many functions, sparsity allows a
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clever method to approximate the Hessian with surprisingly few gradient evaluations. Some of the results
in Chapter 2 appeared in McCormick (1981).

The second problem, discussed in Chapter 3, is that of making a given sparse matrix even sparser,
perhaps as sparse as possible. The motivation is that increased sparsity should lead to savings in time and
storage. An earlier version of some of the material in Chapter 3 appeared in llolTmani and McCormick (1982).

This technical report is a reformatted version of McCormick (1983).

1.2. Background and Notation

Though the problems studied in this thesis aippear to be nunierical by nature, they are both amenable
to a combinatorial approach. Much of the preiilninary material in Chapters 2 and 3 is aimed at howing
the underlying combinatorial nature of the problems. The presentation assumes a basic knowledge of
couibinatories, though references are given as new concepts are encountered. A basic reference for graph
theory is Bondy and Murty (1976). Two good references for combinatorial optimization, and for bipartite
matching in particular, are Lawler (1976) and Papadimitriou and Stieglitz (1982).

An important combinatorial concept that appears constantly in both chapters ms the notion of com-
putational complexity, which attempts to determine whether some problems art- inherently more difficult
to solve than others. The most important tool available for this purpose is NP-Completeness. [toughly
speaking, a problem X is NP-Complete if it is a. hard to solve as any of the well-known hard combinatorial
problems such as the Traveling Salesman Problem or the Graph Coloring Problem. A good reference for
NP-Completeness is Garey and Johnson (1979).

A problem X is shown to be NP-Complete by reducing a known NP-Complete problem Y to X.
Reducing Y to X means that a polynomial way of encoding an instance of Y into an instance of X is
demonstrated that has the property that solving the instance of X also solves the encoded instance of Y.
Thus a fast (polynomial time) algorithm for solving X would also solve Y in polynomial tune, so that X
can be no easier than Y.

Strictly speaking, it is not known whether NP-Comiplete problems are actually harder than problems
that have known polynomial algorithms, but tire conventional wilsdomn among complexity theorists is that any
algorithm that solves such a problem must take an exponential number of steps, so that NP-Completeness is
tantamount to practical intractability. This belief should not be. taken to imply that there is no hope of ever
making any progress on an NP-Complcte problem. One of the most active areas of complexity research is in
finding and analyzing heuristic algorithms for NO'-Comnplete problems (algorithms that only approximately
solve a problem, or efficiently solve a subset of instances).

On occasions we shall want to distinguish between typical problems encountered in practice and ar-
bitrarily structured problems. It is a truism of sp~arsity research that many practical prublem. have ill-defined
additional structure that tends to make them more tractable than, say, randomly generated problems. When
we want to refer to this phenomenon, we shall write of "real" or "real-life" or "practical" problems.

Despite attempting to fully "combinatorialize" our problems, at some points their numerical properties
have to be considered. The reader should be aware that finite-precision arithmetic (a mode! of computer
arithmetic) differs in many respects from "exact" arithmetic. The issues involved in trying to maintain
accuracy in numerical computations are encompassed by the teris numerical stability and conditioning.
An introduction to this subject is given in Dalilquist and ljiirck (1974).

Our notational conventions are as follows. A term is printed in bold-face when it is being defined, and
slanted type is used for emphasis. Capital letters A, 8, ... , are used for matrices arid index set%, smnall letters
a, b, .... for vectors and scalars, and script letters D, , .. , for graphs arid nmatchings. Theorems, equations
arid tables are all referred to by a three part number of the form x.y.z, which means the zth occurrence of
that object in major section x.y. The end of a proof is marked by the symbol "0.



Chapter 2

Approximating Sparse Hessians

2.1. Introduction to Sparse Hessians

In numerical optimization procedures it is sometimes necessary to evaluate the Hessian matrix

°(xo) ( ,(x )

of a function b': R" R. It is usually preferable to evaluate 11(z ° ) analytically, but it is not always possible
to do so. For instance, F may not be known analytically (if, say, F is the output of a simulation), F may
be of a formi that makes 11 very complicated to evaluate analytically, or the user of an optimization routine
may simply be unwilling to provide an evaluation routine for I). These considerations make it useful for the
designer of a "black box" optimization routine to include a facility for approximating H by finite-differencing.

We shall assume that there is a way to evaluate the gradient or F, call it g(z) = . .., , o)), for
use in finite-difTerencing. The fundamental fact that is used in finite-differencing is that if d is a "suitably"
small (see Gill, Murray and Wright (1981), Sections 4.6.1 and 8.6, for a discussion of difference interval sizes)
perturbation vector, then differencing g along direction d gives the linear equations

dTif(zo) = g(x0 + d) - (2.1.1)

where fl(x° ) is an approximation to 11(z°). Note that the right hand side of (2.1.1) is calculated from the
gradient eval,,ation routine, the "unknowns" are the entries of it, and (2. 1. 1) is a system of n equations, one
for each CoMponent or the gradient.

The most common and straightforward method of approximating H(z°) is successively to choose d in
(2.1.1) to be a Rrnall multiple of each of the unit vectors et , e,..., e". Let 6i be the chosen difference interval
for the it' coordinate. When d -- 6e' the jth equation in (2.1.1) is

6bj,.(X0 ) - g(x 0 + 6,ei) - g( ),

thus allowing 1,i to solve for an approximation to all of row i of H(x°). For any smooth F, H is symmetric,
and so the fI r,-Aulting rrom the usual method is symmetrized by setting

Though equations (2. 1. 1) are trivial to solve when unit vectors are used for differencing, the procedure has
one great drawback When considering the running times or optimization routines, the standard assumption
is that calculating g() is expensive relative to other operations. The value y(x°) must be calculated by an
optimization routine for other purposes, so we do riot include it in evaluation counts. In addition to g(X°),
the usual procedure requires n gradient evaluations for each approximation of rU, and so cau be prohibitively
expensive even for moderately large n. As is shown later in Section 2.5, when the lessian has no special
structure the iumber of gradient evaluations cannot be reduced below n, making explicit approximation of
11 through litite-difirer'iciig unattractive. fit sortie contexts, adequate approximations to II can e obtained

- eflicienitly through other means, see, e.g., the vast literattre on quasi-Newton rmethods (Gill, Murray and
Wright (1981). Section 4.5.2). Ihowever, even with such methods, an explicit Ilessian approximation can be
useful for dimstguishing between a saddle point and a true rniumuim.

3
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The saving grace is that If often has special structure that can be exploited. Sometimes it is known
fromi the structure of the problem that hi,(x) = 0 for soine i and j, independent of x. A Hessian is said to be
sparse when such inrormation is known about a large proportion or its entries. It is convenient to represent
the sparsity information by a matrix of X's and 0'., where "0" represents an entry known to Ix zero for all
z or interest, and "X" represents any other entry Stch a matrix is called the sparsity pattern of II, and
inherits its symmetry. For example, if F(x, y, z) -z 3 + (y + z) 3 , the sparsity pattern of its H|essian is

0 X •

X

As a slight generalization, note that it may also be known that an hjj(z) is a non-zero constant
independent of x. Such an entry can be treated almost like a zero in this context, the only difference
being that the constant must be subtracted front the right hand side of (2.1.1) at the appropriate point. For
simplicity, we shall subsequently consider only the zero/non-zero distinction, though only minor changes are
needed to adapt the results to the constant case as well.

As an example of how sparsity can be used to approximate a Ilessian more elliciently, consider the
"arrowhead" sparsity pattern (see Powell and Toit (1979), p. 1060):

0: xJ (2.1.2)

X X X .." X

Choose the first difference direction to be d' -6 0_n. The resulting jth equation in (2. 1. 1) is

0 g,) ( + d) - g(x 0 ).

These equations can be solved for hin(z°), " = 1,2, ... ,. Choose the second difference direction to be
d" - The jth equation of (2.1.1) is now

bij(xii) =gi(x - d") - gi(x°), 1 , 2,..., n - 1,

yklding the remaining non-zeros in ff. Thus the i evaluations necessary in the usual method have been
reduced to just two by using special difference dircitions. With the assumption that gradient evaluation
is expensive, this is a significant saving and makes finite-difference approximations feasible for large-scale
optimization.

Suppose further that H has the following truncated arrowhead structure:

0 0 0 0 X
0 0 0 0 X
0 0 X 0 X
0O 0 Ox X
X X X X X)

Note that the first, second and fifth equations or (2.1.1) are not used in the first evaluation. if g can be
evaluated component by component, more time could be saved by evaluating only the third and fourth
coenponeCui of g(xo t d'). But it ofte.n happens that the componenL-4 or g have comnon subexpressions that
make evaluating one cormponent of g nearly as exisxnsive as evaluating all of g, causing these apparent savings
to vanish. Also, many times g is available only a.t a uiser-written black box, and so it is not po.sible to specify

..* that only a subset of components be evaluated. These considerations lead us to assume heceforth that g
can e evaluated only as a whole, not component by component. Ilowever, it is easy to see how to adapt
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the output of many of the available heuristics so that one can take advantage of component by component
evaluation when it is available.

Our general goal now i6 to approximate the Hessian of a given function F when If has a known sparsity
pattern, using the minimum possible number of gradient evaluations. This problem las been previously
considered by several authors, including Powell and Toint (1979), Coleman and Mor6 (0982) and Thapa
(1980), Section 5.1. In order for an approximation method to be practical it must be fast and it must be
numerically stable. Searching for a balance between these two competing goals has led previous researchers
to consider the problem under various restrictions on the form of equations (2.1.I). A systematic way of
classifying these restrictions is presented in Section 2.2, and a subclassification of the so-called direct methods
is presented in Section 2.3.

In order to better understand the examples in Sections 2.2 and 2.3 and to be able to analyze the
complexity of different classes of methods, it is helpful to have a graph representation or sparsity patterns.
Since the sparsity pattern or if is symmetric, a natural model to choose is the graph g(11) with node set
N = {, 2,..., n } and edges E = { { i, j} I hojis not known to be 0 }. Thus the symmetry of H1 corresponds
to the undirectedness of 9(11). When drawing pictures of 9(11), loops that stem from non-zero diagonal
entries in f- will be suppressed. For example, the following sparsity pattern corresponds to the displayed
graph:

x X 0

0 X × X

Conversely, any undirected graph (possibly with loops) clearly corresponds to the sparsity pattern of some
matrix I.

Using this graph model, it is proved in Section 2.4 that all the variations of the direct methods considered
in Section 2.3 are NP-Complete. Section 2.4 concludes with some positive results about heuristics for direct
methods to counterbalance the negative complexity results.

In order to be able to quantify the performance of heuristics, it would be useful to have an easily
computable lower bound on the number of evaluations needed. The number or evaluations needed when no
restrictions are placed on the difference directions is clearly a lower bound. Some results about this bound
and how to compute it efliciently are presented in Section 2.5.

This chapter of the thesis concludes with Section 2.6, which points out the unresolved questions in the
preceding sections and suggests areas for future research.

2.2. Classifying Approximation Methods

Denote (g(r 0 - d') - g(- 0 ))T by A' and an approximation to 11(x) by ft(x). An approximation method
is an algorithm that, when given F and the sparsity pattern of its lessian, chooses fixed (independent of z)
difference directions d',d 2 

.. , dk so that the nk equations

ft(x0 )d A' , 1- 1,2,. .. ,k, (2.2.1)

(which are just (2.1.1) re-written in the new notation) have a subsystem that can be uniquely solved to yield

fl(xo). When the i,j entry or the sparsity pattern is zero, hj ( = h,,) is set to zero in (2.2.1). Because of
the assumed symmetry of the Hessian, variables hij and ho1 are identified. Many approximation methods

determine h0i and hi, is if Ihey were different, which leads to over-determined linear systems when they
are identified. This is. the re-son why it, is required that only a subsystem of (2.2.1) uniquely determine the
non-zero hij's. For examiple, the usual iethod that chooses d' = 6.e4, i = 1,2, ... ,n, is an approximation
method, where the unknown hi;, i 3 j, appears in both the jth equation for d' and the i t equation for dl
Deleting equation j for d' when j < i leads to a subsystem of (2.2.1) that can I6. uniquely solved for ft(xO).
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For n = 3, this subsystem is of the form

( 62 (h12  A2V~IllhI I-63 13 A (2.2.2)
62 Jh22 ~2(.2263  II I IAI"

63) h 33 , \A3

The efficiency of an approximation method depends on two factors. First, since evaluating the gradient
is assumed to be expensive, the ideal approximation method would minimize k, the number of difference
directions used to form equations (2.2.1). Finding the k difference directions is a one-time cost; since
the sparsity pattern of I is independent of x, the difference directions are generated at the start of the
optimization and used at every iteration thereafter.

Second, once a set of difference directions has been found, equations (2.2.1) must be solved for fl(x).
* Solving a diagonal system of equations like (2.2.2) is both faster and more numerically stable than solving

a general system of equations. The solution cost is incurred whenever the Hessian is to be evaluated. If an
approximation method generates a set of equations (2.2.1) which are ill-conditioned, ft may not be a good
approximation to iI, and the convergence rate of an optimization procedure may suffer. Also, if solving
equations (2.2.1) is very difficult, thien the approximation method may contribute an unacceptable overhead
to optimization.

Thus a smaller k may lead to fewer gradient evaluations per iteration, but also to spending more
time in solving equations per iteration. This trale-off has led researchers to the realization that practical
approximation methods may need to restrict the form of equations (2.2.1). Powell and Toint (1979) classify
approximation methods as follows. If, as in (2.2.2), the approximation method always gives rise to a diagonal
subsystem, it is called a direct method (since the Hessian can be solved for directly). The usual unit vector
method is a direct method. If the subsystem can always be permuted into triangular form, the approximation
method is called a substitution method (since the elements of the lessian can be solved for by 7;mple
substitution). Finally, if subsystems can arise which cannot be permuted into triangular form, the method
is called an elimination method (since sonic sort of Gaussian elimination must be applied to solve for H).
Examples of substitution and elimination methods are exhibited in Section 2.5.

The next sectioi will show that it is useful to break down these classes of methods further into subclasses.
Given a particular subclass S, our goal is to find a fast optimal method in S. That is, given a sparsity
pattern H, an optimal method in S generates difference directions d',d', ,dk so that (1) the restrictions
of S are satisfied and (2) k is as small as possible for this I!. To be practical, an optimal method must be
fast in finding the dl; although this is a one-time cost, it should not contribute too much overhead to the
total optimization time. After the next section classifies the direct methods, Section 2.4 shows that in a
certain technical sense, there are no fast optimal direct methods for any of the classes of direct methods.

"" 2.3. Classifying Direct Methods

This section considers direct methods for approximating Ih.suians. An entry of II which is not known
to be zero is called an unknown, and unknowns h,j and hji are identified. The defining restriction of direct
methods turns out to be equivalent to a relationship between the sparsity pattern of II and the zero/non-zero
structure of the di.To see the equivalence, regard the non-zero components of each d' as specifying a subset
s, of the column indices of It. The set S is called the 1th group of columns of II. When two columns
belongi,'g to S1 both I we an unknown in row i, we say that there is an overlap in S1 in row i. For example,

consid, the spars' .attern:

X E ) V\
The group corresponding to d = (1,1,O)T consists of colunus 1, 2 }, which overlap in row 3 but not in row
2.
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The set of directions {d'} chosen by a direct method gives rise to equations (2.2.1). In order for (2.2.1)
to have a diagonal subsystem that carl be solved for all the unknowns in II, each unknown h1, (or hi) must
appear by itself in at least one equation, say the equation for row i in the set of equations arising from d'.
This condition implies that i E Si and that there are no other unknowns in row i of S, (otherwise, hii would
not be the only unknown in the ith equation of d'). Thus, for hi, to he determined directly, S1 can have no
overlap in row i. The family of column subsets { S } corresponding to the directions { d' } computed by a

direct method must therefore satisfy the

Direct Cover Property (DCP): For each unknown h," = hjIi there must be an S, with either j E S,
and no overlap in row i, or i E St and no overlap in row j.

Conversely, given a sparsity pattern and a family { S1} of column subsets satisfying (DCP), the set of
difference directions d' = - ES, 6je can be defined, which correspond to a direct method. Thus finding an
optimal direct method is equivalent to the purely combinatorial problem of finding a minimum cardinality
direct cover.

2.3.1. Approximation of Sparse Jacobians

l)irect approximation methods for Hfessians have evolved out of previously studied methods for ap-
proximnating sparse Jacobians of fuictions F: RI " --, It' by finite-differencing. An example of the idea in this
case is that if a Jacobian has the sparsity pattern

( 0 00 X ),

0 0 0 x
0 0 X j0

then differencing F along d' = (1, 1, 1,0,0) and d2 = (0,0,0,1, 1) approximates the Jacobian in just two
function evaluations rather than five, since there is no overlap among the first three or last two columns.
There are al.o other applications of finding minimum groupings of non-overlapping columns; see, e.g.,
Dencker, l)mrre ard Ileutt (ORl) or lIirre and Fels (1980). The possibility of such reductions in function
.valua~ior.s l:- caused the prob!en of finding a minimum set of difference directions to be thoroughly
studied. Several heuristics for finding "good" sets of directions have been investigated (see Curtis, Powell
and Reid (1974), and Coleman and Mor6 (1981)). The computational complexity of finding an optimal set
of difference directions in a direct Jacobian approximation method has also been investigated, resulting in
the next theorem.

Theorem 2.3.1: (Coleman and Mor6 (1981), Theorem 3.3, and Newsam and Ramsdell (1982), Theorem 1)
Finding an optimal set of difference directions for directly approximating a Jacobian is NP-Complcte. 0

2.3.2. Classification by Type of Overlapping

The Hessian problem is significantly more difficult than the Jacobian problem because or the symmetry
of the matrix. Various heuristic approaches to finding optimal direct covers have been proposed. We review
next the history of 'h.se efforts, anud then propose a new way or classifying direct methods.

One obvious approach to :approxinmating Hessians is simply to apply one of the Jacobian methods to
the symmetric sparsity pattern of the Ilessian. Such an approach leads to families of subsets or columns
whose subsets have nao overlap in any row. As long as every column is in some subset, such a family clearly
satisfics (I)CI'), so that any direct Jacobian approximation method immediately becomes a direct method
for ilessians. A direct cover which has no overlap in any row of any group is called a non-overlap direct
cover (NDC). The first NDC heuristic for Jacobians was proposed by Curtis, Powell and Reid (1974), and
it was later improved by Coleman and Mor6 (1981).

l'owell aid Toint (V' 79) recognized tht a significant decrease in gradient evaluations can be achieved
by taking advantage or symmetry. For example, recall the arrowhead sparsity pattern (2.1.2). Since every
column overlaps with every other, any NI)C must contain at least n groups (and of course n suffice). But, as
was shown in Section 2.1, if the first difference direction is dl - 6,be, the, it does not matter if subscquent
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columns overlap in row n since the unknowns in row n have already been det rmined by the first ,'valuation
and symmetry. Exploiting this observation reduces the number of gradient evaluations for 4!his cxaiipl: from
n to two.

In general, if S 1 has no overlaps in any row and if j C S1 , then by symmetry row j is completely
determined after the first evaluation, and so overlaps in row j can be ignored in later group.n. Thus we
consider families of column subsets with the following property:

Sequential Overlap Property (SOP): Group S1 can have an overlap in row i only if there is a k < I
with i E SA.

For an unknown hi, define the minimum index group of h, to be p min{1 I either i or j belongs

to group i). When (SOP) holds, hij must be the only unknown in its row in group p, so that (DCP) is
satisfied. Direct covers with (SOP) are called sequential overlap direct covers (SeqDC). Note that any
NDC algorithm that generates its groups sequentially can easily be converted into a SeqDC algorithm by
deleting the columns and corresponding rows of group St before finding group S1 1 .

Powell and Toint (1979) showed that there are sparsity patterns for which an optinial SeqDC is not an
optimal direct cover. Their example is:

(x X X 0 0)\

lx X x 0 X0 x
x X 0 0 X (2.3.1)
X0 0 X 0 0

0 x 0 0 x 0
0 0 0 0 X

It is easy to see that any SeqDC for (2.3.1) requires at least four groups, but that {{ 1,5 },{2,6 O, {3,4 }} is
a direct cover of size only three. Thapa (1980), Section 5.1, proposed a method that tries to L.,ke advantage
of such situations, and that produces a direct cover which may not satisfy (SO'). Direct covrs that do not
necessarily satisfy any additional restrictions are called simultaneous overlap direct covers (SimDC);
any direct cover is a SimDC.

Note that NDC C SeqDC C SimDC and that these inclusions are strict, as shown by (2.1.2) and (2.3.1).

2.3.3. Classification by Partitioning

All of the heuristic methods mentioned above produce partitioned direct covers, that Ls, every column
belongs to exactly one group. Even when there are no zero columns, not every column need belong to some
group in a valid direct cover. Consider o  X)
{ { 2 } is a direct cover (in fact, an NDC) of minimum size, yet column one )elongs to no group. But when
hii is an unknown, column i must belong to some group in order for hi, to be determined. When i arises
from unconstrained optimization, hii is usually non-zero for all i, which implies that all columns must be
in some group. Thus, unless otherwise stated, henceforth it is asumed that h,, is an unknown for all i, so
that only direct covers containing every column need to be considered.

Now consider a SeqDC in which columns may appear in more than one group. If every occurrence of
every column in a group other than its smallest index group is deleted, (SOl) holds since each unknown
is determined by its miniumi indeX group. That is, since each unknown is determined by a rolumn in its
minimum index group, any later occurrences of that column are superfluous, and there can be tio occurrences

- of that column in an earlier group by the delinition of minimum index group. Thus, for Seql)Cs (and also
for NDCs since NDC C SeqDC), it suffices to consider only partitioned direct covers.
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Unfortunately, the same is not true for SimDCs. Consider the sparsity pattern:

X 0 0 X X X
0 X X 0 X X 0O
0 X X X 0 0
X 0 X X X 0 0. '
X X 0 X x 0 0
X X 0 0 0 x

X 0 X 0 0 0 X/

Laborious calculations verify that any partitioned simultaneous direct cover (PS!inDC) must use
at least five groups, whereas (1, 2 }, { 1,3 }, (4, 6 }, (5,7 } } is a general simultaneous direct cover
(GSImDC) which uses only four groups. This is the smallest possible such example in terms of number of
columns. Eisenstat (referenced in Coleman and More (1982), equation (2.1)) has discovered an infinite class
of such exam ples.

Thes two classifications give four distinct subclasse of direct covers: NDC, SeqDC, PSiml)C and
CSimDC. The next section shows that finding an optimal member each of the four classes is NP-Complete.

2.4. The Complexity of Direct Methods

The main purpose of this section is to prove thc following four theorems:

Theorem 2.4.1: Finding an optimal NDC is NP-Complete.

Theorem 2.4.2: Finding an optimal SeqDC is NP-Complete.

Theorem 2.4.3: Finding an optimal I'SimDC is NP-Complete.

Theorem 2.4.4: Finding an optimal CSiml)C is NP-Complete.

Recall from Section 1.2 that to prove that a problem X is Nl'-Complete it is necessary to reduce a
known NP-Complete problem to problem X. We shall use three known NP-Complete problems. The first
is the direct Jacobian approximation problem already discussed in Section 2.3. The second is the

3-Satinflability Problem (3SAT): Let u1 , u2,. .. , u be a set of atoms, with the corresponding set of
literals L {u, ii,, u 2 ,i 2, ... , un,1, }. Let C -= {C,C 2 ,..., , } be a set or 3-clauses drawn
from h, that is, each C, C I,, and C.1 - 3. Is there a truth assignment r : {ut, ... ,u,} -i
{ true,false } such that each C, contains at least one u with r(ui) = true or at least one U with
r(u;)-- raise?

The set of clauses is an abstraction or a logical formula; imagine the clauses as parenthesized subformnulae
who e literals are connected by 'or', with all the clauses connected by 'and'. Then a satisfying truth
as. ignment make.' tw whole formula true.

re tlhird problem is the

3-Color Graph Coloring Problem: Given a graph 9 = (V, I), does there exist a function f: V -.

(1,2,3 s,ch that f(v) / (?a) whenever (u, u } C '?

This problem remains Nl'-Coinplctv even when g is restricted to be planar (see Carey and Johnson
(1979), 'theoremn 4.2) Note that 3(GC' is a restricted form of the classic problem of finding the chromatic
number of a graph "the NI'-Coumplete.ess of tme Jacobian direct approximation problem was stated in
Theoremn 2.3.1 Th,, N l'-Com petem.4 proofs of 3SA'r and 3GCI1 are referenced in Carey and Johson
(1979), lroblenis 1,021 ald I(:T.1 respm'tively.

A graph operaito,, that is needed iii two of the proofs is the notion of edge replacement. (iven a
graph 9 anid edge ( u, v } in 9, and graph K with two distinguished vertices s and t called terminals,

the result of replacing edge r of 9 hy K is obtained by removing e from 9 and identifying u with, and v
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with t. For example, if

9 and K

then replacing e with K yields the graph:

All the proofs depend on the equivalence between Hessian sparsity patterns and undirected graphs
mentioned in Section 2.1. Throughout this section, 9 denotes the graph a.sociated with It.

If a polynomial algorithm exists for finding an optimal direct cover of any type, it reust in particular
work on sparsity patterns whose diagonal entries are all unknowns. Thus it can be assumred without loss
of generality that every colunin index belongs to at least one group. A direct cover "hen a. ociates With
each vertex of 9 the index of the group (indices of groups in the case of (iSimDCs) to wici its coluini,
belongs. Such an association of integers to vertices is a graph coloring, whosr type deptnds oii the nature of
the associated direct cover. In each of the four cases, we shall establish what sort of coloring is involved and
show that the problem is NP-Complete. Note that in every case two adjacent. vertices s and j cannot be the
same color because then neither hi, nor h., could be determined directly due to overlap with hi,. Thus the

". generalized graph coloring must be a usual graph coloring as well.

2.4.1. The Complexity of Finding Optimal NDCs

We shall give two proofs of Theorem 2.4.1, the first very general and complicated, the second quite
specific and short.

In an NDC, two columns in the same group, i.e. two vertices of the same color, cannot overlap. Column
i overlaps column j if hki and hk,, are both unknowns, i.e., if vertices i and j are both adjacent to vertex

* k. Thus in the coloring of 9, no two vertices of the same color can have a common neighbor. Conversely,
given such a coloring of 9, clearly no two columns in the associated groups can overlap.

If distance from vertex i to vertex j in the graph is measured by "minitnur number of edges in any
path between i and j", then any two vertices of the same color must be more than two units apart. In the
usual Graph Coloring Problem, any two vertices of the same color must be more than one unit apart. Then
a common generalization is a proper distance-k coloring of a graph 9, which is a partition of the vertices
of 9 into classes (colors) so that every pair of vertices of the same color is more than k units apart. The
associated optimization problem is the

Distance-k Graph Coloring Problem (DkGCP): Given a graph 9, find a proper distance-k coloring
of 9 in the minimum possible number of colors.

The usual Graph Coloring 'roblem (GCP) is DIGCP, and the optimal NDC problem is equivalent to

I)2GCP. We shall use this equivalence to show that the optimal NI)C problem is NP-Complete by showing

that D2GCP is NP-Complete; in fact, we shall show the stronger result that DkGCP is NP-Complete for
any fixed k > 2.

To show that DkGCP is NP-Complete, 3SAT will be encoded into it. To facilitate the encoding, DkGCP
must be recast as a decision problem. As is standard with optimization problems, DkGCP is re-phrased to
"Is there a distance-k coloring that uses p or fewer colors?" In a slight abuse of notation, let DkCCP refer
to both the optimization problem and the related decision problem. Our encoding is a generalization of the
one found in Karp's original proof (1972) of the NP-Completeness of GCI'. The first proof of Theorem 2.4.1
requires the exclusion of the case in which a clause contains both an atomi And its negation. But such clauses
arc always trivially satisfied, and s) henceforth "3SAT" will mian "3-Satisliability without trivial clauses"
Also, it is assumed (without loss of generality) that n > 4. Then for any clause C3 , there is an atom u, with
*u 'Cj, and Ui VC,.
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(iven a 3SAT problem P, we construct from it a decision problem on a graph 9,4P). If P has atoms
U1,,U,...,un and clauses C 1 ,C 2 , .,Cm, let h = rk/21 and p = 2nk 4 m(k - 1). Let V and E denote the

vertices and edges of 91t(P), and define them by:

rU , literal vertices, false ver-
FT,T,, r =l,...,k tices true vertices
a'. • - .. k- clause vertices, intermediate

of, } 8= l,...,m vertices

{ uj,u) all i ui, Ui different colors

FT,TF' } )
{ F'. T;} all r, all i 3 j all F's, T's different colors

{ T, T; }{1:,1;+'  all, r
{ 1-, C } all CO different color than its

f 14 alCl{I, u, } if u, E C. literals

E= {,Tj u., a. can only be F. or{ , all i 34 T'

{14, T}Jk
{C;,C;} r >T h C, r > 0, different from

{C iF/ } h all a y t, all i each other and F's and
{C',17+' r >hJ
{C,C+'} r >_ T's

{C-_,',F }, al, U1 'C all a, k odd
C. 1.T, ally . C O can only beF colors

{C' , F U1, 9C. all , k evenJ of its literals

{Ch,. T} alli a ,

Note that 9k(P) is considered only for k > 2, implying that h 4- 1 < k, so that h + 1 makes sense as a

superscript for the F's and the T's The global structure of 95 (P) looks like

r-.- F.- F O . . .,"

Three propositions about the structure of a proper distance-k coloring of 9k(P) are needed for the proof.

Proposition 2.4.5.- The verticet /'r, T!, and C7, i = 1,...,n, a l, ... ,n, r l,...,k must all have

ddfirrent colors, thus using up all p colors.

Proor: Consider the length k paths

F I y Fl -
T,~j -Tj...T

J,

-.
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which demonstrate that all F's and "'s must be different colors. Now consider the length k - I paths
h +IF F+2

7,h+ 1 (2 .4.1)O .-C . .. . ... .T ,

which show that no C., 0 < q < h can be any P" or T! color, r > h. The length at mobt k - I paths

_C,- hF)' +2

- ... - F"'~ -h .. T

show that no Cq, h < q < k can be any F" or "'I color, r > h. Let i be an index such that u, V1C. and
fil- C., and consider the length k - 1 paths

(C l .h, T k o d d
Ih-, " - ..... T! k (2.4.2)

which show that no CI, 0 < q < h can be any 7" color, r < h. The length k paths

_ _-- ..... r' k odd (2.4.3)c.-c. ~ ... €. h". ',h - ----....F k eve,,

show that no Cq, 0 < q < h can be any F' color, r < h. The length k paths

_.k-2 .j _ ... . h , . - , . . . F
- {T +i-T h -. T

show that no C ,,h < q < k, can be any F" or T' color, r < h. The length k - I paths
_rh Ch-I _Ch-2_ ,

(Th - , - ...- C k odd (2.4.4)C,-G, C'8&C, -- / ,Ch -Ch-'- .Ctl k even

show that no Cq can be the same color as any C', 0 < q, r < h. Finally, the length k I path

c,-. ,- ,C ,C"' c,'' (2.4.5)

shows that no C can be the same color as any C, h < q, r < k. 0

Since Fr, T! and Cq, q > 0, use up all the colors, the colors are subsequently referred to by these vertex
names.

Proposition 2.4.6: Vertices u, and ii must be colored F! and T! in some order, i I I,...,n.

Proof: Let j - i and consider the length k paths

l.I -1.-F ' -F-
' j I - I -. F

7 -T" - '  ... (2.4.6)

7k- 1~ -Ck-I Ck-2 _C

which show that u, and fs, cannot be any color other than Y! and 7'. Also, u, and is, certainly cannot be
the same color. 0

Thus a proper distance-k coloring of 9k(I') induces a truth ;mignment on the hterals.
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Proposition 2.4.7: If the literals in clause C, have indices a, b, and r, then Co must be colored F!, F6,
or F, a l,...,m.
Proof. Note that C o can be added to the beginning or the paths in (2.4.1), (2.4.2), (2.4.3), (2.4.4) and (2.4.5),
thus excluding all colors except F t from Co.. If I is an index such that ut C., i U VC,, then the edge

F"--F, can be dropped from (2.4.3) and Co can be added to the beginning to show that C o cannot be any
F color either. 0

Now the Ni'-Completeness theorem can be stated and proved, which will then immediately imply that
finding an optimal NDC is NP-Complete. This theorem is a symmetric version or a result in Section 3 of
Coleman and Mori (1981).

Theorem 2.4.8: For fixed k > 2, DkGCP is NP-Complete.

Proof: Since the size of .g(P) is a polynomial in m and n, it is clear that the above reduction of 3SAT to
DkGCP can be carried out in polynomial time. It must be shown that there is a satisfying truth assignment
for the SAT problem P if and only if the graph 9k(P) has a proper distance-k coloring il p or fewer colors.

First suppose that .9 k(P) is properly distance-k colored. If I., 1b, and 1, are the literals contained in C,,
then the length k path

shows that C O cannot be the same color as any of I., 1b, or 1,. But Co must be colored F!, FL, or Y! by
Proposition 2.4.7. By Proposition 2.4.6, each 1i is colored either F! or 71, so that each clause must contain
at least one true literal under the truth asisignment induced by the proper coloring, i.e., the clauses are
satisfiable.

Now it suffices to show that 9k(P) can always be colored in p or fewer colors if ' is satisfiable. Let r
be a satisfying truth assignment for C, C2 ,..., C. First color the F!'s, T's and C's, r > 0, as decreed
by Proposition 2.4.5. Color ui with I, if r(uj) = trie, color u, with F' otherwise; color iii with the
complementary color. Each C, has at least one true literal, say I.. Color C ° with color F.. Finally, color
I' with C'+ , r = I.... ,k - I, where the subscript on C' is interpreted modulo m.

We now show that this coloring is proper. The colors F!, T!, I < r 5 k, each appear on only one
vertex and so are proper. Color C7 +! appears on exactly two vertices, itself and 1'. A shortest possible path

betwee, these vertices in 9k(P) is

If--Iv- -. ...- I. i --Ty -C +-'-C'+z C. +

and is of length k -1- I. It is a shortest path because at least k edges must be used to get from layer 11 to layer
C:, and one extra edge must be used to get from a: F or a T to a C. Also, any alternative path between
these vertices that goes through a C o has at least k -4- 2h edges because of the difference in subscripts, and
because the C,'s do not interconnect for r < h; thus color C( is proper. Color T' also appears on exactly
two vertict-4, itself and one or ui or iiu,. A shortest possible path between these vertices is the third one in
(2.4.6) with T, added at the end. For j -/ i, at least k edges must be used to get from the u. layer to the
T! layer, and an extra edge is necessary to go from an i vertex to a j vertex. Any other path between these
vertices through the I's uses at least k + 2h - I edges, and so 7 is proper. Finally, P can appe;ar in three
places: Oil itself, oil it, or l, and onl Any imnber of (Is whose clauses contain either u, or it,. As with ui or
i and 7', abowe, u, or iii and F do not cause a conflict. Sonne shortest possible paths between F and any
C? are those in (2.4.3) with C o added to the beginning. Again, at least k edges are necessary to go from the
C o layer to the F. layer, and an extra edge is necessary to go from an I vertex to an i vertex. Any other
path between these vertices through the I's uses at least 2k edges, so that no CO., Ft pair causes a conflict.
Between a u, or i, and a , some shortest possible paths are

of lengths k ard k I respectively. The first cannot exist because or the truth assignment and because there
are no tr;vial clauses. Once again, the second must ise k edges going front layer u. to layer (,2, and a:: extra
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edge going from an F or a T to a C, so that no it, or U,, C O pair conflicts. Flially, a shortest possible path
between C o and C o is (2.4.4) with C O added to the beginning and C ° added to the end, of length k + I. Any
other path between these vertices through the I's uses at least 2k edges, so that no P' color conflicts. Thus
the coloring is proper, and the theorem is proved. 0

Second Proor of 2.4.1: This proof is due to 1Hoffman (1982). The direct Jacobian approximation problem is
reduced to finding an optimal NDC.

Given an m X n Jacobian sparsity pattern A, consider the symmetric (m - n) X (m + n) matrix

= AT I)
i where J is the n X n matrix of all ones, and I ih the m X m identity. Suppose that there is a polynomial

algorithm for finding optimal Nl)Cs, and apply it to If. Since cach of the first m columas of 11 overlaps
with all other columns, each of the first m columnr must appear by itself; but finding an optimal NDC for
tI then essentially reduces to finding a minimum partition of the last n columns of H into non-overlapping
groups. Ilowever, such a minimum partition solv(s the direct Jacobian approximation problem, which is
NP-Complete. Thus finding an optimal NDC must be NP-Complete as well. 0

2.4.2. The Complexity of Finding Optimal SeqDCs

We now consider the sort of coloring of 9 induced by a SeqDC. The first color must be non-overlapping;
hence, as in the NDC case, no two color I vertices can have a common neighbor. Now, since overlap in
the group I rows no longer matters, the row and column indices in group I can be deleted from It, and
the group 2 columns can have no overlap in the reduced II. In graph terms, the reduction of the matrix
corresponds to deleting the color 1 vertices (and their incident edges) from and requiring that the color 2
vertices have no common neighbors in the reduced 9. The color 2 vertices are then deleted from the graph,
and so on. Thus a SeqDC with k groups is equivalent to a

Sequential k-Coloring: A sequential k-coloring of a graph 9 is a function f: V -. { 1,2,..., k } such
that no two vertices u and v with f'(u) = f(u) = I have a common neighbor in the graph obtained
by deleting all vertices w with f(w) < I from 9.

We shall show that it is NP-Complete to decide whether a graph 9 has a sequential 3-coloring.

Proof of Theorem 2.4.2: This proof is due to Stockmeyer (1982). We shall reduce 3SAT to the problem of
deciding whether 9 has a sequential 3-coloring. By the equivalence betw(en SeqDCs and sequential graph
coloring, the reduction will show that finding an optimal SeqDC is also NP-Complete.

Given an instance P of 3SAT, a graph 9 will be constructed such that P has a satisfying truth assignment
if and only if there is a sequential -coloring of 9. For each atom u of P, make a 6-cycle in 9 with two
adjacent vertices labelled u and u, as follows:

By exhaustive enumeration it can be verified that the only two possible ways to 3-color the above graph
properly and sequentially are:

2 - 3 and 3 3 (2.4.7)
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Connect these 6 cycles according to the clauses of P as follows. For each clause C =- (11,12, 13 }, add

the nodes and edges
11 It 3* 9

to , where 11, 12 and 13 are the litcral. vertices ou the 6-cycles.

For example, if P has four atoms, and clauses (U,,U2 , ad ,u4 }, then the constructed g is:

U,9 U U I U4U

First note that by (2.4.7), the neighborhood of a literal I that is in some clause and is not colored I must

look like:

l 2

or (2.4.8)

4 .

In the 4econ(l case, vertex x cannot be colored any of 1, 2 or 3 in a proper sequential 3-coloring, and so

every literal that appears in some clause must be colored I or 2. In the first case of (2.4.8), vertex y must

be colored 3, .nd heuc.e vertex z must be colored 1.
SUppose t1a, g has ben properly sequentially 3-colored and that all three literals in a clause are colored

2. Then by te above remarks about (2..8), the clau.se vertices must be partly colored as follows:

1 2122 1; 2 J 2 '1
3 3* I

z /
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ihe only remaining vertices that could he colored I are x and y, and at most one of them ran be colored
1. But then deleting the color 1 vertices leaves a path of length at least five (the darker vetices if x, say, is
colored 1) which cannot be sequentially 2-colored. Thus every clause must have at lea.Lt one literal colored
1. If a truth assignment is associated with the coloring by setting atom uj true if vertex u, is colored 1,
and false otherwise, then the existence of the sequential 3-coloring of g implies that P has a satisfying truth
assignment.

Conversely, suppose that P has a satisfying truth assignment r. Color literal vertex I of 9 with I if
r(l) = true, and with 2 otherwise. Arbitrarily extend the coloring as in (2.4.7) to the rest of the atomic
6-cycles. Because of the asymmetry of the clause subgraphs, there are five cases to consider in showing how
to color the clause subgraphs, depending on which subset of the literals is true. The live cases and their
colorings are:

2 3 2i 3, 3 3 3t 34

3 21 3
i  1 2, 1 2 2 1

I
it 31 1. 3j 3. 3, 1. 3 3.

2 3 1 2 3 2 3 1 3 2 2 3 1 3 2

1. 2 2 1 2, 1.

3 3 t 3 4 3 o 3 1 3t 31
21 1 ,, 2, 1 2j

31 3j 2 3' 31, 3 2 3 2

1 3 2 1 3 1 3 2 3 1

The only non-trivial case to check in verifying that this coloring is a proper and sequential 3-coloring of 9
is in the neighborhood of a false literal I that is in many clauses. By (2.4.7) and (2.4.8) it must look like:

1 3

The correctness of the coloring is easily seen. Thus the existence of a satisfying truth assignment for P

implies the existence of a proper sequential 3-coloring for 9. 0

2.4.3. The Complexity of Finding Optimal PSimDCs

We now consider the sort of coloring a PSinl)C give rise to. By (DCP), for each unknown hi of i
either the group containing i cannot have overlap in row j, or the group containing j cannot have overlap in
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row i. Equivadently, a family of subsets of columns is not a direct cover if there is an unknown hiA such that
there is overlap in row j or the group containing i, and there is overlap in row i of the group containing j.
In graph terms, the coloring is improper if there is an edge e = { ),j) in g where i is colored ci, j is colored
ci, i is Ldjacent to a vertex p 34 j also colored ci (corresponding to overlap in row i of group ci containing
j), and j is adjacent to a vertex q 3 i also colored e,.

This "excluded colored subgraph" condition is clearly equivalent to (DCI'), and so the next definition is
equivalent to a PSimDC.

Direct k-Color|ing: A direct k-coloring of a graph 9 is a function f : V -- { 1, 2,..., k } such that f is
a coloring in the usual sense and there is no subgraph of 9 colored like:

Ci  C1  Ci C,

where i q and 3 p.

Proof of Theorem 2.4.3: We shall reduce 3CCP to the problem of deciding whether 9 has a proper direct
3-coloring. Since direct k-coloring is equivalent to finding an optimal PShnDC, the reduction will imply that
finding an optimal I'Siml)C is NP-Complete.

Given a graph /C for 3CCP, a graph g will be constructed such that K has a 3-coloring if and only if
has a direct 3-coloring. First note that the 4-cycle has essentially only one proper direct 3-coloring, up to

permutation of colors:
1 c-----2

3L---I (2.4.9)

By (2.4.9), again up to a permutation of colors, there is essentially only one way to color the graph:

3

2. (2.4.10)

Thus graph L forces its terminal a and t to be different colors.
To construct 9 from K, replace every edge or K with L. Thus if

then 9=

Suppose that h ha. a proper direct 3-coloi-ing . By (2.4.10), if each vertex of K is colored with the color
received by its identified terminal under f, the resulting coloring must be a proper 3-coloring of K.

Conversely, suppose that there is a proper 3-coloring f of K. Then color each terminal or g with the
color of its identified vertex in K, and color each non-terminal with the complementary color of the colors of
the two terminals to which it is adjacent. This coloring L clearly a proper 3-coloring of g. Any path of rour
vertices in g must contaiti two terminals -,eparated by a uon-terminal. But these three vertices use all three
colors, and hence th excluded colored subgraph of g cannot exist. Thus g has a proper direct 3-coloring.
0

A direct, coloring is called a "symmetric coloring" in Coleman and Mort (1982), and they call a I'SimDC
"symmetrically consistent partition." They use these concepts to give a quite different proof or Theorem

2.4.3 (see thir Theorem 3.3 and the remarks following it).

V
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2.4.4. The Complexity of Finding Optimal GSimDCs

* The fact that a column can belong to more than one group, aiid hence a vertex of 9can receive mnore
thani one color, makes the proof of Theorem 2.4.4 nmore difficult thAl Lte proof or Theoremi 2.4.3. The same

* analysis of the implications or (DCP) for colorings as in the PSiml)C case still holds here except that Lte
concept 'vertex i i6 colored c1" is replaced by "color c, is one of vertex i's colors." With tis insight it can be
shown that the following formal definition is equivalent to a GSiml)C with kc groups. Let S = 11,2,.. - 1 0c.

Direct k-Multicoloring: A direct multicoloring of a graph 9 is a function f: V -* 2 ' \ 0 satisfying (1)
for each edge e = f ii,j } or 9, f (i) f I() 0 (this is analogous to f being a coloring in thle usual
sense) and (2) there is no subgraph of 9 like

with i 34 q, j 3,6 p, f(i) nl fmq and f(j) nfl (p) 3$ 0 (this is analogous to the excluded coloredI subgraph condition for PHimD)Cs).

Proof ofrTheorem 2.4.4: By reduction from 3CCP. Because of Lte equivalence of direct k-multicoloring with
fluding optimal GSiinDCs discussed above, it suffices to reduce 3GCI' to thc problem of decidirag whether a
graph has a proper direct 3-niulticoloring.

Given a graph K for 3CCI', a graph g will be constructed such that K has a proper 3-coloring if and only
if 9 haa a proper direct 3-multicoloring. First, note that by exhaustive enumeration, uip to a permuttation
of colors the only way to 3-multicolor tbe displayed graph properly and directly is as shown:

2 (2.4.11)

In particular, all vertices of subsequent graph. con. tructed with (2.4.11) can receive only one color.
Given the essentially unique coloring of (2.4. 11), consider how to extend thle indicated partial coloruig

on the following graph:
b c f

2 1 a d e

L = 3g

~2 q
Now using "z = a as shorthand for "vertex z as colored i" it canl be seen that

a = 2 = 3 =4 c= e} = 2 --4f = 3,

* which implies that path adef is colored 2323, an improper 3-inulticoloring, and so a must be colored 3 and
d must be colored 2. Now

which implies that path adef is colored 3232, so that b must be colored 1. Thus Lte only way (tip to a
permutation) to 3-multicolor L properly is:F.! 2 1 3 2 12..)

2 1
3 3 (24.2

r.2...
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Note that as in (2.4.10), L forces its terminals s and t to be different colors.
To derive ,9 from K, replace every edge of K with L. Thus if

K then 9

Suppose that f is a 3-multicoloring of 9. By (2.4.11), f must be in fact a 3-coloring of 9, that is, each
vertex of g has exactly one color. Now color each vertex of K with the color of its identified terminal in 9.
Since the terminals of L. must have different colors, K must be property 3-colored.

Now suppose that f is a 3-coloring of K. Color the terminals of 9 by the colors of their identified
vertices in K. and color the non-terminals of 9 as indicated in (2.4.12), permuting colors appropriately. The
result is clearly an ordinary 3-coloring of 9. Since each L in 9 is properly directly 3-multicolored, the only
possible way for this coloring of 9 to be an improper direct 3-multicoloring is for a counterexample path to
have a terminal as one of its two interior vertices. But the neighborhood of a terminal vertex v in 9 looks
like:

.. 2 2 3

3 3-i 2 2 .

It is now easily seen that no counterexample path existq. Thus 9 can be properly directly 3-multicolored.
n

2.4.5. Other Complexity Results

Two remarks are in order about the last two proofs. First, since 3GCP lis NP-Complete even for planar
K, and since the edge replacement graphs L are themselves planar in both cases, finding optimum l'SimDCs
or CSimDCs for Hessians whose sparsity patterns correspond to planar graphs is NP-Complete. Though
this fact has little practical significance in itself, it does have an interesting corollary. It is well-known
that a planar graph on n vertices can have at most 3n - 6 = O(n) edges (see Bondy and Murty (1976),
Corollary 9.5.2). Thus the intractability of finding optimal PSimDCs and CSimDCs is not due to requiring
algorithms to process nearly dense Hessians. In particular, it is also NP-Complete to find optimal PSimDCs
and GSinDCs for hlessians with O(n) unknowns (with density 0(1/n)).

Second, the proof of Theorem 2.4.4 shows that for every graph 9 resulting from the reduction, any
(GSinl)C for the corresponding lessian which has only three groups must in ract be a lSimDC. Thus the
proof or Thlorem 2.4.4 Also proves Theorem 2.4.3 as a corollary. However, since the proof of Theorem 2.4.3
given is quite sAimple and is a useful warm-up for the proof of Theorem 2.4.4, it was included despite its
technical redundancy.

The complexity or substitution methods can also be analysed through graph coloring. Coleman and
Mor6 (1982) consider a particular subf-lass of substitution methods called lower-triangular substitution
methods delined originally in Powell and 'loiit (1979). These methods bear roughly the analogous relation
to general sibstituion methods as Seql)Cs do to general direct covers. Coleman and Mor6 show that finding
an optimal -et of difference directions for a lower-triangular substitution method is cquivalent to a certain
kind or gra;ph coloring that they call triangular coloring, and use this equivalence to prove the following
(see their lhrorern 7.2).

Theorem 2.4.g: Fiding an optimal lower-triangular substitution set of difference directions is NP-
Complete. '2
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2.4.6. Heuristic Approaches to Direct Methods

The NP-Completeness theorems in this section are rather discouraging, since the conventional wisdom
is that NP-Completeness is tantamount to intractability. On a more positive note, much work has been
done on finding near-optimal, polynomial-time, heuristic algorithms for NP-Complete problems (see Carey
and Johnson (1979), chapter 6).

In the present case, the most obvious heuristic approach is to reduce D2CP to GC and then apply
known heuristic results on GCP to the reduced graph. Given a graph 9 (V,E), define )2(9) (the
distance-2 completion of g) to be the graph on the same vertex set V, and with edges E - { { i,j } i
iandj are distance 2 or less apart in 9 }. Equivalently, when the vertex-vertex adjacency ni;Ltrix A of 9 has
a non-zero diagonal, then D2(9) is the graph whose adjacency matrix is A2 . A third equivalent formulation
is that D2(9) is the intersection graph (see Columbic (19?0), Section 1.2) of the columns of itz, adjacency
matrix. It is easy to verify that a coloring of V is a proper distance-2 coloring of 9 if anld only if it is a
proper (distance-i) coloring of Dz(9) (note that this reauctioi also implies that DICCP is Ni'-Complctee.

If there were a "good" heuristic for CCP, it could be composed with D2 (*) to obtain a "good" heuristic
for D2CCP. Coleman and Mor6 (1981), Section 4, gives a good overview of the present .3aeC of the art
in GCP heuristics, which is not "good". In fact, if c"(9) denotes the number of colors u.ed by thet best
known heuristic on graph 9, and X(9) denotes the optimal number of colors necessary Tor 9 (its chromatic
number), then in the worst case

ma cI() = (n-), (2.4.13)

where a = i - ti)' (the best known heuristic and the bound (2.4.13) are due to Widgerson (1982), see alsowherea I -X19)-i r u oWdgro 18)
Johnson (1974) for worst case analysis of other graph coloring heuristics). Two facts mitigate the severity
of (2.4.13). First, the range of D2(*) does not include all graphs, and hence a better bound than (2.4.13)
can be obtained for D2GCP. Second, average-case results have been obtained for GCP heuristics that are
considerably better than (2.4.13).

To improve on (2.4.13) for D2GCP, consider the specific heuristic called the distance-2 sequential
algorithm (D2SA). Define .P(i) {j 3 i J j is distance < 2 from i }, the distance-2 neighborhood
of a vertex i in a graph. Thus, if i has color c in a proper distance-2 coloring, no j E NW(i) can be color c.
Then D2SA assigns color

min{c > I nojE M (i), j < i, is colored c}

to vertex i, i = 1.V. That is, D2SA assigns vertex i the smallest color not conflicting with those
already assigned. (D2SA is just the distance-2 version of the best known GCP heuristic, the sequential
algorithm, which is called the CPR method in its application. to approximating sparse Jacobkans; see
Curtis, Powell and Reid (1974).) Let c'(9) denote the number of colors used by D2SA when applied to 9.

In order to obtain bounds on c8 (g), two definitions are required. The maximum degree of , A(),

is defined as A(9) = maxlj {J) E E(9)}I.

The dstance-2 chromatic number of 9, X2(9), is defined as the optimal number of colors in a proper
distance-2 coloring of 9, i.e.,

X2(9) = min{ k 9 has a proper distance-2 coloring with k colors).

The following theorem boun Is X2(9) and cS(9) in terms of A(9), and a corollary imiproves (2.4.13) for
D2SA:

Theorem 2.4.10s Let d-- A(g). Then

d+ 1 < X2(9) < Cs(9) <d 2 + 1 (2.4.14)

for all graphs 9.

Proof: Let i be a vertex incident to exactly d edges, and note that i and its d nearest neighbors niust, all 1e
different colors in a proper distance-2 coloring; this proves the lower hound in (2.4.14). The second inequality
in (2.4.14) is trivial.
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To prove the upper bound in (2.4.14), note that for any vertex i, !N(i)l < d + d(d - 1) = d'. Suppose
that D2SA assigns color I to vertex i; by definition of D2SA, color I is assigned only if at lea-t one vertex
of each color !.... - I is in (i). Thus, if i were assigned color I > d2 + 1, then fI(i)l :! d' + I (a
contradiction). ('This proof is essentially a constructive proof of Corollary 8.2.1 in Bondy and Murty (1976).)
0
Corollary 2.4.11t For all n > 1,

max 1= (2.4.5)
on n vertices x,(9) -

Proof: Clearly, e$(9) < n. Let k = X2(9). Applying the first and third inequalities of (2.4.14) yields

CS(9) .5 (k - 1)2 + 1. (2.4.16)

Consider two cases:
Case 1: ir n < (k - 1)2 + 1, then v'Ft + I< k and so

CS(9) < nT 2k -- k < VW-1+ I- 2+ < vfn-lI+l1.
. - -~-,/ t+1.-- I + I

Case 2: ifn>(k- 1)2 + 1, then k < v/-I + 1, and so

c8 (9) < (k-1)'+t 1 k-S 2k - k =k - / -k < -k < V - I+ 1.

(Corollary 2.4.11 is essentially (4.6) of Coleman and MorM (1981) in the special case that the matrix is square
and symmetric). C

C Craphs that attain bound (2.4.16) ror a certain ordering of their vertices exist for k = 1,2,3,4. The
cascs k = 1,2 are trivial. For k = 3, consider 93 = (V3 , I 3) defined by

V 3 = xij i=1,2,3, j=-1,2,3,4,5,

8a = mj, j+ j+t } all i,j (subscripts modulo 3 and 5).

Then D2SA assigns zi color i when the vertices are ordered by i (which is optimal by (2.4.14)), and assigns
*xj color j when the vertices are ordered by j (which is the worst possible, by (2.4.16)). For k = 4, consider
94 =(V 4,E4) defined by

V4 = x i  i = 1,2,3,4, j = 1,...,10,

f{. , ,+t,+s } au 1
P.4 = { zj, x,+ ,+2 } all oddj all i (subscripts modulo 4 and 10).

{ Zjj, i1,3j+t } all even ji

Then D2SA applied to 94 also colors Xj with i when ordered by i, and with j when ordered by j (which
are again respectively optimal and worst possible).

Extending this construction seems to be extremely difficult. Its extension appears to be roughly equiv-
alent to solving a hard open problem in extremal graph theory (see BollabAs (1978), Section IV.A). Even if
it could be extended, the number or vertices is given by n = k((k - 1)2 + 1), so that

ck (n'/3), (2.4.17)k

which is a better result than (2.4.15). Thus, while (2.4.14), (2.4.15) and (2.4.16) are better results than
(2.4.13), we conjecture that (2.4.17) is also a (better) bound.

Turning from the worst case to the average case, Crimmet and Mcl)iarmid (1975) proved the following
theorem:

"H'i



22 Approximating Sparse ilesains Chapter 2

Theorem 2.4.12: Fix n vertices, and let vertices i and j he independently connected by an ,,g, with fixed
probability p, 0 < p < 1. Let c'(9) be the number of colorsi ised by CPR on 9, and K() be the optimal
number of colors (so that cC(g) and X() are random variables). Then

cc(g) < 2t

X(9) -

for all i > 0 with probability I - o(1). 0

Thus, on average, CP. almost never performs more than twice as badly ;w the optirnai ,crategy. This
theorem has at least two unsatisfactory features in this context. First, sparsity patterns in pracutcal problems
are not uniformly random as assumed in Theorem 2.4.12. Second, even if they were, the density of sparsity
patterns tends to be 0(1/n) rather than constant with increasing n. It would be useful o determine a
better random model for sparsity patterns, or at least to prove Theorem 2.4.12 under the assumption that
p = O0(1/n).

The weakness of such random models in predicting practical performance is illustrated by :ic computa-
tional experiments of Coleman and Mor6 (1982) with a version of a CPR heuristic, nam..ly ( I'm( .L)piieCd to
the sparsity pattern with the columns in the smallest-last ordering (see Coleman anul Mot,, (1981) for
details). in their Table 4.1, column "maxr" represents a lower b)ound on X2(9), and column "s|" represents
c'(9), using the smallest-last ordering. When averaged over the 30 real examples that they tv.,ted, cS(g)
used 14.43 colo-, whereas the lower bound averaged 13.6 colors. Thus the improved (PIR us.d ess than
one extra color above the optimal on average, and cs(g) averaged at most 6.1% larger thau , . big
improvement over Theorem 2.4.12.

2.5. Lower Bounding Elimination Methods
The computational experiments reported in Coleman and Mor6 (1982), Tables 4.1 and 8.1 are quite

intriguing. For the 30 practical problems on which they tested various heuristics, the besi. Nl)C heuristic

used 14.43 groups on average, the best SeqDC heuristic used 11.63 groups and the best lower-triangular
substitution heuristic used 7.87 groups. This progression leads to speculation about the minimum possible
number of difference directions for a given sparsity pattern, and whether there is a polynomial algorithm to
compute it. The corresponding problem for sparse Jacobians is relatively easy; see Newsain ard Ramsdell
(1982), Theorem 3.

The ultimate lower bound on the number of difference directions necessary to approximate a given H1,
call it -t(1i), is the minimum number needed by an elimination method, since these methods allow complete

freedom in choosing the d'. This section presents some results that give various lower bounds for -y(1), and
presents some evidence that the best lower bound is polynomially computable. It is conjectured that the
best lower bound is tight for every H.

It must be emphasized at the outset that elimination methods are studied here not because they are
claimed to be in any sense practical. Instead the aim is to formulate a procedure whereby it can be easily
checked how far the substitution heuristics are from -1(ii). If these heuristics arc round to be close to -y(II) on
average, the practicality of the heuristics evidently makes further work on elimiation methods in practice
unappealing. Alternatively, if there is to be a significant gap between the substitution heuristics and "Y(11),
it would be justified to investigate whether there are practically implementable elimination heuristics which
out-perform the substitution heuristics.

In this section we shall rout assume that the sparsity pattern of If has a non-zero diagonal. Also, H and
its associated graph will be referred to interchangeably, so that it will make sense to write that II is bipartite.
For ease of referral equations (2.2.1) are reproduced here, deleting the hat on 11 and the delndence on z °

for simplicity:
lid' = A i  I1= 1, 2,...k. (2.5.1)

(Recall that A' is defined as (q(zo + d') - g(xn))'r.) Note that (2.5.1) is a set of nk linear equations in the
("+1) unknowns h, ,,h 2 , h.12 , h3 , ... , h,, h,,.. .,h,,,,. Denote the coelficient matrix of (2.5. 1) by A",.

I .. ."-- " "-" " ' .f s. .. . n.a n~~t -m mtm l, - i a~ , & ,s . --- ,
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2.5.1. A General Lower Bound on Evaluations
In the situation or interest, sparsity causes many of the unknowns to be deleted, that is, causes many of

the columns in A9 ', to be deleted. Ilowever, assume for the moment that H is completely dense. Then by
simple linear algebra, the largest number of unknowns that can be solved for by a subsystem of equations
(2.5.1) is equal to the rank of A* ' . Suppose that it can be shown that the maximum rank possible for
A " k is, say, r. Note that rv, would have to be increasing in k. As sparsity comes into play, columns are
eliminated from A", and its rank can only decrease. Thus, even for a sparse 11, the maximum number
of unknowns that can be solved for is still at most r,. By this rensoning a lower bound on 'y(JI) can be
calculated as follows. Denote the number of unknowns in H by q, and the smallest k such that rk ! 17 by
k. Then at least k" evaluations are necessary to approximate H. Thus we shall now focus our attention on
determining r,%.

The rank of A-A' is affected by the numerical values in the d. By assuming that the d' satisfy the Haar
condition, namely that every square submatrix of the matrix whose 1 th column is d' is nonsingular, the
rwik or An ' is mna~xmized. (The llaar condition is implied by the assumption that the entries of the d' are
independent algebraic indeterminates. It is also implied by the assumption that the d are perturbed from
their given values by infinitesimals, similar to the construction often used in non-degeneracy proofs.) For

example, choosing the de as columns from a Vandernionde matrix (see Knuth (1973), S~ction 1.2.3, exercises
36 45) satisfies the Ilaar condition.

To determine r,, we investigate the structure of A" ,' . Label the t' row of the set of equations
associated with A' by "AI," and label the column corresponding to variable hj by "hj." For n - 4 and
k 2, A4',2 has the form

hit h,, ht h31 h32 h3$ h41 h4 h4s h.4

Ad dl 4
I dl d[ d;l d,'

d; dd d4

1, dt dd'd d1 (2.'2

* vIn general the entry in row A , column h,, of AU,& is

d!i q ---i,*if q-j, (2.5.3)

0 otherwise.

Besides yielding a lower bound on y(H), the determination of r,, is also interesting from another
point or view. lMach atdditional gradient evaluation yields n more seemingly independent linear equations.
lecause of symmetry there are only ("2+I) = - ) unknowns in a dense Ilessian. Titus it might appear

that only r"__' evalu:tions would ufiice to approximate a dense 11esian, since the number or equations -

I- ( ) q. PrerhaPs tlIe, the number of gradient evaluations needed even for a dense lessian
could be reduced b .hw n by a clever choice or difference directions. Ilowever, the next theorem shows that

such savings are uoot possible. Tie theorem appears to be well-known in the folklore, but we know of no
published proof.
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Theorem 2.5.1: The inaxiinum number or" unknowns that can be determined by a set of gradient evaluatioits
along any k directions, 0 < k < n is given by

Vn.k ="n + (n r .)I-.. t-(n, k +- 1)

=nk-(I)=---(n * 1) (n-k+ 1). (2.5.4)

In particular, n evaluations are necessary to obtain all (T) unknowns in the completely dcnse case.
Bound (2.5.4) is sharp for some sparsity patterns.

We shall give two different proofs of Theorem 2.5.1, the first a column-oriented proof, the second a
row-oriented proof. The column-oriented proof is more direct since it exhibits an explicit subset of rt of
the unknowns which form a basis, but the row-oriented proof is simpler.

£olu,|n-oriented Proof of Theorem 2.5.1: Partition the rows of AUk as in (2.5.2) into n row blocks of k
equations cacti, the Ih row block consisting of equations A, A,..., A#. Partition the columns of An,k as
in (2.5.2) into n column blocks of 1,2,..., n unknowns ach, the jth coluln block consisting of columns
hi,, h 2 ,. ., hij,. ULt A, denote the i,jth submatrix of this partition. To simplify notation, define S" as
the k-vector of the jih coinponents of the {d'},i.e., cJ = (d;, d,..., di! , j - 1,.. ,n. Then (2.5.2) and

(2.5.3) imply that each A? . is completely described by

0 0, ifi > j;

A! (c itc",. ., ,'), j;
= (o,0,.. .,c',. .. ,o), ifs < j.

1 2 i

To complete the proof, it must be shown that rank(A n '5 ) = rn,k. Let E he the set of colimns h,,j with
k < j i < n, and let F be the complementary set of columns. We shall show that the ,olrn n of F can
be used to eliminate the columns of E. Note that IFI r.,%, and that each column n In' ,ivoives only c'
with i < k.

Define X1 to be the solution of the system

(C| 1 C ... C k).l = -_C1,  I --k + 1, k+ 2,..., n

(X' exists and is unique under the assumption of the Hlaar condition). The following computations show that
linear combinations of the columns in F, using the { ( X } at. multipliers, cal 1w used to ci|inmate the columns
in E; since the form of the linear combinations iz, complicated, the result is best understood by referring
to the following example (2.5.6), which is (2.5.2) re-written in the new notation with the multipliers defined
below for the cae that k 2, q = 4 and p = 3:

hal hAl h22 h3  h32 h33  h41 h42 A43 h44
4. 4 4 > 4 4 4

A4), + ft l + \.\4 \4.\3 *!X

-1 :: -- 3 C
4

3 4
C 

4

jC C 
2  c3  C

1 C2 CS C4

Let p ard q satisfy k < p < q ! n, so that hq~q and hq.p are typical colunns in E. To clininate column
hq,q from A' 5 , add to it X times column hq,j, j = It. , k, and X, tiies column h,.,, i - I,.. .k
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= 1, .--,i (these multipliers are the first line of X's in (2.5.6)). From (2.5.5) and (2.5.6) the resulting
column is zero in row blocks i, k < i < n, i 7- q, since no column with a non-zero coefficient is non-zero
in these row blocks. In row block i, 1 < i < k, the non-zcro contributions to the resulting column are

Xj, )q' frol column block i, X4!Xjc from column block 1, i < I < k, and X~c9 from column block q,
for a total of

In row block q, the only non-zero contribution is from column block q, which is

XIc' + c4 = 0.
1!5k

Thus the resultant column is zero and column hq,, is indeed dependent on the columns of F.
Now column hq,p is eliminated using the columns in F. Add to it )! times column h, j= !...,k,

X times column hr.,, j = 1,... ,k, and (XX: 4- X'X)) times column j, ... ,k, j = 1,... ,i (these
multipliers are shown in the second row or vs in (2..)). There is no non-zero contribution to the resultant

column in any column block i, k < i < n, i 7 p,q. In row block i, 1 < i < k, there is a contribution of
E4<-(XqX- XXq)c' from column block i, a contribution or (X? + X'))c' from column block 1, i < I < k,
a contribution or X c' from column block p, and a contribution of Xfc' from column block q, for a total of\PC + )+ >, , ):C + o , i , ,,....,k.
In row block p, there is a contribution of ",<k )4c ' from column block p and a contribution of cq from
column block q for a total of

) -- c9 = 0.

In row block q, the only non-zero contribution is from column block q and is

X + C' = 0.

Once again the row block totals are all zero, so that column hq,p is also dependent on the columns in F.
Eliminating the I + 2 + ... + (n - k) columns of E shows that rank(A " ' ) < r, ,t. To show that

rank(A ' -k) = r,.k, delete the columns of E from A"*k, and delete the last k - i rows from each row block i,
i < k. The remaihing matrix L4 r,,A, by r.,k and is block upper triangular with square, non-singular diagonal
blocks. Thus thiA siaatrix of A' is non-singular, and hence rank(A "n&) r.,k.

To show that this bound is sharp, consider the sparsity pattern which has hi ars an unknown whenever
i < k or j < k fly letting d' be the ith unit vector for i = 1,2,... ,k, all rn,A or the unknowns can clearly
be solved for. arnd thus the bound of the theorem is attained. 0
Row-orientd t'roof of Theorem 2.5. 1: This proof is due to Iloffmnan (1982).

For each 2-subset {i,j ) C { 1,2,..k } deline an, nk-vector z with entries indexed with the same
labels as the rows of A 'k by {- ifp=A,

Z~ P (P9 if p j(2.5.7);qq

0 otherwise.

We now show that z'" is in the null space of the columns of A" ,k, i.e., zjA " k - 0. Take columns h[ 1 and
h2, of A" t as repre,,entative examples. Iy (2.5.3), column hI is non-zero only in rows A', I = 1,2,... ,k.
Comparing with (2.5.7), P' and column h ,,I both non-zcro only in rows A' and A',. In row A , a0 is

and column, h,, is d , and in row A',, z i: -d and column hil is dj, so that the value of the product
is d,& - d-- 0, an desired.
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Similarly, by (2.5.3) and (2.5.7) the only non-zero contributions to the product for column h 2 1 are

from row A' A4 A' A'

inz'j a" d1 -&I -&2
in column h2j 14 & d 2j d

which again totals zero, as desired.
The next claim is that the z'3 are independent. Let Z be the rnk X ) matrix with columns indcxv,

by 2-subsets of { 1, 2,..., k } whose { i,i }th column is z' j . It is necebsary to ,how that / hits full rank. Set
d' = el, the It" unit vector, so that dI = if p = 1, and is 0 otherwise. Choosing d' in this way could only

decrease the rank of Z. Let { i,j} be a 2-subset of { 1,2,..., k } and consider row A' of X. From (2.5.7),
entry { i,j } of row A' of Z is +1, and every other entry is zero. Thus the submatrix of Z consisting of rows

A .for all subsets {i,j} is diagonal, and Z has full rank.
The rank of the null space of the rows of Atk is therefore at least the number of columns of Z, namely( ), and so the rank of A can be at most nk - (). To show that rank A ,  _ rt,k, consider the sparsity

pattern DT5 0 1
where C is a k X k dense matrix, and D is an k X (n - k) dense matrix. It has r,t unknowns. 13y choosing the
d' as above, all of its unknowns are clearly determined by k evaluations, and consequently the corresponding
set of equtations must have rank at least rnk. hut the set of equations arising from such a sparsity pattern
has a coefficient matrix which is a submatrix of A" 'k, and so rank A~",  r, . C1

2.5.2. A Bipartite Lower Bound on Evaluations

In considering sparsity patterns with some (or even all) zero diagonal entries, it is :)o. sble to obtain a
sharper lower bound than that of Theorem 2.5.1, by considering bipartite sparsity );,Lerns, i.e., sparsity
patterns whose associated graphs are bipartite.

A sparsity pattern is bipartite if and only if it has a principal permutation so that its structure looks
like

where C is an a X t matrix. Such a ilessian can clearly be approximated by at most min(a,t) gradient
evaluations, by differencing along either the first a or the last t unit vectors.

When the matrix C in (2.5.8) is completely dense, call the coefficient matrix of the equations (2.5.1) Bk.
As was the case with A "',, the maximum number of unknowns that can be determined by k evaluations of
a sparse bipartite Hessian is bounded above by the rank of Bk. The next theorem is the bipartite analogue
of Theorem 2.5.1.

Theorem 2.5.2: The maximum number of unknowns of a sparse bipartite Hessian (as in (2.5.8)) that can
be determined front a set of gradient evaluations along any k directions, 0 < k < min(s, t), is

r~ti = (s + t)k - k.

In particular, when the matrix C in (2.5.8) is completely dense, min(s, t) evaluations are needed to obtain
all at unknowns. This bound is sharp for some sparsity patterns.

Proof: This proof uses the same ideas as the row-oriented proof of Theorem 2.5.1. We shall show that
rank Bik = r.tk.

Denote the first a indics, of it by SI, S2,.., Sa, and the last i indices by TI2,.. .,T. The
columns of B'k are labelled with hsiTj for i = 1,2,...,s and j = 1,2, .... , and the rows with A',, p
SI, S2,.... Ss, TI,T2,...,Tt, I = 1,2,... ,k. The entry in row A'p, column hSiTJ of B1k corresponding to
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(2.5.3) equals
dT'. if p = Si,

d, ifp = Tj, (2.5.9)

0 otherwise.

For every ordered pair (i, j) with i,y E (1,2,.. -, k }, define an nk-vector z'j indexed as the rows of Bk
by { d ifp = A 9 and, <,

.. -Tq if p= A', and i >j,
9= d . if p = A',j and i <, (2.5.10)

d[qq if p= Ajq andi >j,
1. 0 otherwise.

Note that this definition is consistent when i = j.
The first claim is that zi1k = 0, which is verified for a typical column hsT.. Assume without loss of

generality that i < j. From (2.5.9) and (2.5.10) the contributions to the product are
from row A.i Al,

in z'i d!, -4,
in column hS.T, d!., cps

and the total product is zero, as claimed.
The second claim is that the z'j are independent. As before, let Z be the nk X k= matrix whose columns

are the z and set - - e T, so that di = I if p = SI or TI, and is 0 otherwise. Choosing these d'

could only decrease the rank of Z. Let i,j E { 1,2,.... k} where i < j, say, and consider row As of Z.
From (2.5.10) column z'j is -4- in row Ats, and every other entry is zero. If i > j consider row A7.j, where
column z'l is - I and all other entries are zero. Since this subset of rows picks out a diagonal submatrix of
Z, it has full rank

Because Z has k2 columns, rank Bk < nk-k 2 . Now consider the Hessian with bipartite sparsity pattern

0T  E 0
c.. D T 0 0(Dr

where C is dense and k X k, D is dense and k X (t - k), and E is dense and (a - k) X k. It has k(s + t) - V
unknowns. Al of its unknowns can be approximated with only k evaluations by using the dt defined above.
fy the same re:asoning as in the proof of Theorem 2.5.1, it follows that rank B' = nk - V. 0

2.5.3. Examples of Lower Bounding
We now ,ve some examples of how Theorems 2.5.1 and 2.5.2 are used to calculate lower bounds for

f(11). First cofisider dense band matrices, which have an unknown in entry i,j if and only if li--jl <_ w;

w is called the bandwidth or the matrix. For instance, when n 5 and w = 3, the sparsity pattern looks
like

4 X X XX 0

0 XX X X]

Note that such ama rix has r, unknowns. It is well-known (se. Coleman and Mor6 (1981), Theorem 5.1)
4that dense baLnl mal,riceR can be approximated by using the difference directions

t-:j

d =
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In fact, these d' correspond to a SeqDC for dense bad matrices. Since the number of evaluations equals tOhe
smallest k for which the number of unknowns i at most r,.k, by Theorem 2.5.1 these w.. of direclions have

the miniumun possible cardinality for dense band matrices. Thus the bound of Theorem 2.5.1 is actually
achieved ror dense band matrices.

The bound of Theorem 2.5.1 can also be attained for the coniplete graphs without loops, which
have unknowns at every entry i,j, except when i = j. The insights discussed here are due to Ooftman
(1982). For instance, when n = 3, the sparsity pattern is

0 X .

It is known (see Powell and Toint (1979), equation (5.1)) that by differencing along d' (1,1,1), (2.5.11) can

be approximated in only one evaluation. (ApproximaLing the matrix (2.5.11) with this d is an, elimination
method, and it is easy to see that any substitution method musL use more than one ev.Lduation. The matrix
(2.5.11) seems to be the only example known, a point which is further explored later in his section.)

Let 11" have the incidence matrix of the complete graph without loops on n vertices as its sparsity
pattern; it has (3) unknowns. Suppose that 11n can by optimally approximiated by -I. gradient evaluations
by an as yet unknown elimination method. Then ",.. _ "y. - i since 11" can surely be approximated
by first differencing along d' = e" + ' to get the last row and column of IP+f, anni then using the -Y.
approximation scheme on the remaining unknowns, which have the same sparsity pattern as 1[".

Let X. be the lower bound on "1. implied by Theorem 2.5.1, so that X.-= min{ k (n) < nk - ( )}
which implies that X. = 1'+2n "/Ki. Since (2.5.11) is H3, by the remarks above and the fact that
X,, < -y,,, the first few values of ),, and y,, are

n 1 2 3 4 5 6
S 0 1 1 2 3 3

0 1 1 2 3?

We now show that 16 = 3. Arrange the vertices of 116 in an array like:

2
A

4 5 6

and difference along the three indicated triangles, i.e. along dl - (1, 1, 1,0,0,0), d 2 (0, 1,0, 1,1,0) and
d3 = (0,0, 1,0, I, I). By (2.5.11) these directions determ|ine all the edges of 116 in the triangles, i.e. edges
12, 13, 23, 24,..., 56. The 123 triangle difference (d) gives his + h25 + h35 = AI imt row 5. ledges 25 and
35 are triangle edges, and so this equation determnines edge 15 (and by symmetry, edges 34 and 26 are also
determined). In row 4, the 123 triangle equation is h,., t h26 + h34 = At . ,dge 24 is a triangle edge, and it
was shown above that edge 34 can also be determined; thus edge 14 (and so also 16 and 46) is determined.
But all the edges in 116 have now been determined, which implies that "16 = 3.

For n > 6 the inductive method that showed that y,,+1 < -in, + I cal be used as long as X,,I = X. + I.

It can be shown that Xn, 4 x. + I fails if and only if is integral. This holds ir and only if

8n + I is a perfect oid siuare, which happens ir and only if n (+) for sorie integer k. After n = 6, the
next such1 is , = 10 When ,, has such a vahue, X.--- Xn._ , (t), which is the next lower such
n. Such integers are known, as triangular nmmbiars for the reason that when n is triangular, n points can
be arranged in a triangular array similar Lo the couaiguration for n 6 above.

Now it is inductively easy to show that when it (k+ ), Xn -= () by using the (k) triangular

2
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differences

A

The induction hypothesis shows that every edge of HO is determined by these differences except for those
involving a vertex of the largest triangle and a point on the opposite edge. But these can be determined
from the other edges by a process similar to that described above for n = 6. Thus the triangular numbers
are doubly triangular in this context.

For values of n that are not triangular numbers, both X. and -. increase by one. Thus for all n,

X = yn, and so once again the implicit bound of Theorem 2.5.1 is attained.

For the next example, consider the sparsity pattern

0 × ×

x x (2.5.12)X X X
X X X 0
X X X

for which n 6 and q = 9. Theorem 2.5.1 says that two evaluations can determine as many as 62 - (2)
11 unknowns, and thus gives a lower bound of only 2. But since (2.5.12) is also a (complete) bipartite graph
with q = t - 3, rheorem 2.5.2 gives a better lower bound of 3 (arid also says that 3 evaluations are optimal.
Example (2.5.12) illustrates that Theorem 2.5.2 can imply a hightcr bound than Theorem 2.5.1.

There is a way to sharpen further the bounds of Theorems 2.5 1 and 2.5.2. Consid-sr the sparsity pattern

x x 0,
(2.5.13)

X X X 0
(0 0 0 )

r with n - 4 aid q = 7. When k = 2, Theorem 2.5.1 concludes that as many as 7 unknowns could be
calculated. Ilit in approximating (2.5.13), the leading 3 X 3 submatrix must be approximated as well, and
Theorem 2.5.1 implies that k = 3 evaluations are necessary to approximate a dense 3 X 3 matrix. Thus a
better bound can be obtained in some cases front a submnatrix than from the whole matrix.

For any (non-empty) S C { 1,2,...,n) the bound of Theorem 2.5.1 can be computed based on the
submatrix of II whose rows and columns are in S. The largest lower bound so computed is then a possibly
sharper lower Imud for -f(11) than the bound b sed on the whole matrix.

If a suhiatrix of 11 corresponds to a bipartite graph, a lower bound should be computed using the
sharper Theorem 2.5.2. Unfortunately, sometimes Theorem 2.5.2 can give a sharper result even when a
submatrix does not correspond tW a bipartite gr:aph. Consider Lhe sparsity pattern
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x 0 0 0 0 X X x X X X X
o x 0 000 X X X X X X
0 0 x 0 0 0 X X X X X X
0 0 0 X* 0 0 X X X X X X
0 0 00 X O X X XX X X
0 0 000 X XX X XX X
X XX XX X X 0 0 0 0 0 (2.5.14)

X XX X XX O 0X 0 00 0
X X X X X X 0 0 X 00 0
X X X X X X 0 0 0 x 00
X XX X XX 0 0 00 X 0
X X X X X X 0 0000 X/

with n = 12 and q = 48. Since 5.12 - (5) = 50 > 48, Theorem 2.5.1 gives a best lower bound of k 5

(even if checked for all submatrices). But by deleting the diagonal entries, the matrix becomes bipartite and
Theorem 2.5.2 gives the better lower bound of k = 6.

Thus, to achieve the best lower bound derivable frot, Theorems 2.5.1 and 2.5.2, it is necessary to consider
not just the vertex-induced subgraphs of ii (which correspond to submatrices of 11), but all the :tge-induced
subgrapphs as well. The edge-induced submnatrices must be checked for bipartiteness to see whether Theorem

*[ 2.5.2 can give a higher bound.

2.5.4. Computing Lower Bounds in Theory

Next we consider how to compute the bounds implicit in Theorems 2.5.1 and 2.5.2. In princple, as was
shown in the proofs of Theorem 2.5.1, -1(If) can be computed by the following algorithm.

Algorithm -it
0. Set k = 1.
i. Construct the matrix A ',k, using, say, columns of a Vandermonde matrix for the d'.

2. Delete the columns of A "', corresponding to entries of H known to be zero, yielding .

3. Calculate rank(A " t) = tk. If tk > i, then -y(H) = k. Stop.
4. Otherwise, set k -- k + 1 and go to 1.

With infinite-precision arithmetic, Algorithm -y is a polynomial algorithm, since Step 3 can be performed
at most n times on a matrix whose size is bounded by u 2 . Calculating rank is all O(sizc 3 ) operation, yielding
a total time bound of O(n). llowever in practice, with finite-precision arithmetic, the decs; ni .1i Step 3 is
not clear cut. Calculating the rank of any numerical matrix is extremely difficult in practice (s(c Peters and
Wilkinson (1970)), so much so that the converaloal wisdom among numerical analysts is Lhat. numerical
rank cannot be precisely defined. Even if it could be, the well-known classes of matrices guaranteed to satisfy
tihe lir condition (such as the Vandermonde matrices) are notoriously ill-conditioned and difficult to work
with (see Newsam and Ramsdell (1981), p. k3 for similar concerns in the context of Jacobian approximation).
Thus Algorithm -f would not be practical even if rank were calculable.

A more practical implementation of Algorithm -y is to use ram(Ionly generated vectors for the d, in
Step I With probability nearly I, a random matrix satisfies the flaar condition, and in practice A"', is

usually well enough conditioned that Step 3 can be carried out satisfactorily in finite-precision arithmetic.
By relpating the randomized Algorithm -y several times using different random d', a high degree of confidence
in the answer can be obtained. Indeed just such anl algorithm has been imnplemented (in order to search for
a countcrexample to a conjecture that comes later), and it has perforned satisfactorily on small problems
with n < 12.

The randomized Algorithm -y hma some drawbacks. Firrst, it becomes increasingly slow to compute the
LU-factorization that is used to calcuhae the rank of tie nk X q1 matrices. Second, one has les8 and less faith
in the computed answer as n gets large, due to te usual numerical dilliculties iii compiting rank mentioned
above, coupled with a smaller degree of confidence that time random matrices satisfy the llaar condition
to the tolerance of the comrnFuter. Third, the whole procedure is esthetically unsatisfying to mathematical
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sensibilities be use the number "1(ll) is an intrinsic characteristic of 11, and calculating ranks of random
matrices sQens to be a roundabout way or computing it. A purely combinatorial algorithm would seem much

more appropriate.
Unfortunately such an algorithm does not now exist. lowever, we make the following two conjectures:

Conjecture 2.5.3: -y(H) is equal to the largest lower bound computable via subgraphs using Theorems

2.5.1 and 2.5.2.

Conjecture 2.5.4: There is a purely combinatorial polynomial algorithm for computing -f(II) that is fast
in practice.

The evidence for Conjecture 2.5.3 is that -y(H) has been computed for many small H (n < 12) by using
the randomized Algorithm -1, and no counterexample has been found. Also, the conjecture is true for all the
examples discimsed above. That is, every 11 tried so far does have some subgraph K such that -y(H1) is the

smallest k for which the bound of either Theorem 2.5.1 or 2.5.2 is satisfied on K.
The eviderice for Conjecture 2.5.4 is stronger than a lack of counterexamples. There already exists an

almost practirally effective way to compute -y1), namely the randomized version of Algorithm -y. The fact

that -f(11) can be easily computed for many 1H appears to be inconsistent with any supposition that finding
(H) is N I'-Comnplete. A striking characteristic of most NP-Cownplete problems is that they are no easier in

practice than they are in theory. Thus the existence of the randomized Algorithm -y seenis strong evidence

for Conjecture 2.5.4.

2.5.5. Computing Lower Bounds in Practice
"-i If 'oijv,,ire.% 2.5.3 and 2.5.4 are both true, it would follow that there is a (practical) comnbinatorial

polynomial algorthm for computing X(11), the largest lower bound implied by Theorems 2.5.1 and 2.5.2 over

all subgraphs o I. Some preliminary work is presented next on how to compute X(H), which can also be• taken as evide,,ce for both conjectures.

For simplicity, assume at first that I! is bipartite; then all of its edge-induced subgraphs are also
bipartite, so that only the bound of Theorem 2.5.2 is relevant. Let E be any subset of the unknowns of H

(or of the edges of its graph), and let N(E) = { i hii E E, some j }. For example, if

0 X X X

11= XX 0 0 0
X( X 0 00

X X 0 0 0

and E--- {h,..h,1 .h1 5 }, then N(E)= {1,3,4,5}.
In the subgraph of II determined by R, Theorem 2.5.2 says that k evaluations might suffice for the JEJ

unknowns if 'E' < N(E)! - k - k2 . Thus the largest lower bound over all E must be

min{k lE !5 1N(E)!.k- k for all E). (2.5.15)

To see why. deol e the rmirimizing k in (2.5.15) by k', and let E" be an edge subset that blocks k" from
being smaller. %o that k' min{k ! IE'! < JN(I') • k - k2 }. But this is the definition of the lower
bound on -,(11) derivable froin E", so that k is a lower bound on -y(41). For any other edge subset ',
IE! < IN(E)' k (k') 2 , which implies that the lower bound derivable from R is at umost k'.

Equation (2.5 15) is reminiscent of Phillip flall-type theorems (see, e.g., Welsh (1976), pp. 97 98). Let
Bi be a bipartite graph with left vertices S and right vertices T. For U C S, let l'(U) = {i E T I
{(s,i } is an (dge of h for some A E U T}. Ph I'hillip Ilall theorem of interest is

Theorem 2.5.5: Let in ',! a d d > 0. Ten Ii has a matching of size m - d if and only if

!Ul < ll'(u) + d, for all U C S. (2.5.16)

(See Welsh (1976), Theorem 74.) 0
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Theorem 2.5.5 is interesting because it provildes a polynomial algorithm thdt simultaneously verifies an
exponential number of inequalities. That is, verifying the 2' inequalities in (2.5.16) i. vi'qivaciit by Theorem
2.5.5 to finding out whether B has a inatching of size at least m - d; since good polynomial algorithms exist
for finding a maximum cardinality matching (see Lawler (1976), Chapter 5), the equivalence implies that
there is a polynomial algorithm for verifying th' iit-qualities (2.5.16).

It is simple to generalize Theorem 2.5.5 slightly when the inequalities to be verified are

JUI _ iP(U);, k -t- d for all U C S. (2.5.17)

Recall that the maximum cardinality matching problem on B is equivalent to a network flow problem N as
follows (see Lawler (1976), Section 5.2). Direct each S, T edge from S to T with caLpacity cc, add an arc
(a, i) with capacity I for all i E S, and add an arc (j, t) with capacity I for all j C 7'. Then N has a flow of
value m - d if and only if B has a iiatching of size m - d.

Now change the capacity of each (j,t) arc from I to k (which corresponds to "nultiplying" each T
vertex of B by k). Theorem 2.5.5 becomes

Theorem 2.5.6: The 2"' inequalities (2.5.17) are true if and only if N has a flow of value rm - d.

Since network flow also has a polynomial algorithm (see Lawler (1976), Chapter 4), there is a fast way
of verifying (2.5.17) as well.

Now suppose that the 2 ' - I inequalities

jUl < jIr(u) k d for all 0 $ U C S (2.5.18)

could also be verified in polynomial time for any d > 0. Consider the bipartite graph Bi which has S
{u,,knowns of H }, T-- { 1,2,...,n} and edge { h,3,l} when I = i or j. Then for E C S, P(E) = N(E).
Hence, by setting d - Pc and iterating the hypothetical procedure for k =t, n - 1,..., the minimizing k
in (2.5.15) could be determined. This line of reasoning makes it interesting to find a polynomial algorithm
to solve (2.5.18) (a,, apparently minor variant or (2.5.17)).

Such an algorithm has been provided by Saks and Kahn (1983). Consider the network N of Theorem
2.5.8; let Nj denote N with the capacity of the single are (ai) changed from i to cc. By the usual argument,

a minimum cut for N, must be of the form { } u U u I'(U) for some U C S. Since the capacity of (a, i) is
oo, i must be in U. Thus the minimum cut, and so the maximum flow, for Ni solves the problem

min m ul -t r(U)l. (2.5.19)

Solve each of the maximum flow/minimum cut problems Ni and let U* be a minimizer in (2.5.19) for .n NV
with the smallest capacity minimum cut. Now, if (2.5.18) is satisfied, then certainly in + d < 1 (U6)j - k -
JU'[ * m = smallest value of any Ni flow. Conversely, suppose that

mn + d < jP(U)l k - lU' + ,m. (2.5.20)

By definition of U', the right-hand side of (2.5.20) is less than or equal to Ir(U);. Ik - U; -m for all U C S,

and so (2.5.18) is satisfied.
The problem of verifying the 2' - I inequalities in (2.5.18) has been reduced to solving m network

flow problems, and so can be done in polynomial time. Let V he the set of nodes of N,, and .' the
set of its arcs. Then the complexity of solving one Ni maximum Ilow problem is 0(,V .;I logjV) (see
Papadimnitriou and Stieglitz (1982), Chapter 9). Since verifying (2.5.18) involves m problems, it is of
complexity O(inIVI I, logIVl).

For the problem of interest, JSJ := m = q, IV = 1ju Tu == ra + q, and Ej i- n + 3q. The procedure
iterates at most rI times, for a total time complexity of O(ri(n + q)2 log(n + q)). When q = O(n), the
comnplexity reduces to ((n 3 log n).

To re-capitulate, we have shown that when II is bipartite, the following algorithii exactly calculates
X(I):
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Algorithm B: 3
0. Set k 1
L. For i =each unknown in H! do

Construct network Ni.
Solve maximum flow on Ni, with value vi.

2. Let v* =mini vi.
3. If v + V <tv set k *- k-i, go to. 1 .
4. Else answer X(1I) =r + 1.

Tile existence of Algorithm B is certainly consistent with the truth of Conjectures 2.5.3 and 2.5.4.
When It is not bipartite, it is easy to see that the best bound given by Theorem 2.5.1 can be calculated by
replacing Step 3 of Algorithm n by "If 7 + (k) < v' " since the only difference between the conclusions

of Theorems 2.5.1 and 2.5.2 is the substitution of (k) for k: Unfortunately, as example (2.5.14) shows, the
answer resulting from the modited Algorithm B is not in general equal to X(H), even when all the diagonal
elements of II are unknowns. Resolving this difficulty is an area for more research.

2.5.6. A Bound for Higher-Order Derivatives

A question that naturally arises is how this research extends to approximating higher-order derivatives.
Such an extension is not a practical concern, for storing and working with a moderately large order-3
derivative array, even if it is spars, would be prohibitively expensive. Nevertheless, a mathematical sense
of completion can make such extensions interesting. The urge to generalize has been resisted in most of
the rest of this thesis (except perhaps in the first proof of Theorem 2.4.1), but we shall yield to it here and
indicate how to generalize Theorem 2.5.1 to higher-order derivatives.

Let us review the definition of a higher-order derivative. For a function F: R ' --+ R, its derivative of
,)rder m, V'F, evaluated at point x0, is the n X n X -" X n (m times) array of numbers

a' F(r0 )VF() -- (h,,.,,.), where hi,, . = 

By symmetry of repeated derivatives, , . ( .... ) for any m-permutation i. Thus, the
number of potentially different entries in V"'F(x° ) is the cardinality of the set Inn = {(il,i 2 ,... ,ima) I <
it 5 i2 - i. < n }, the set orm-selections from { 1,2,...,n ) (they are selections instead of subsets
since they can have repeated entries).

Let Ntm {(iI,s 2 .... ,it) I 1 5i < i 2 < "" < it ! k}, the set of -subsets of { 1,2,.. .,k}, so that
'Pi --= (). Then the bijection between elements of Int and Pn+,-,.m given by

(il,i2 ...,i,) E ,m - (ii,i + 1, ... im+ m- )E Pn+m-,m

(see Knuth (1973), Section 1.2.6, exercise 60) shows that sl,,, -- ("+-), so that the number of different
tinknowns in a dense Vm'"(zo) is also (n+m - ) (a special case is that when m = 2, the number of unknowns
if] a dense lh'.isia, is (,2), ;t% already discusaed).

Let 11 - V"I'(x0 ). hi approximating Ifm by finite-dilTerencing V"-'F along directions d, the
approximation fIIn satisfies the linear equations

1,,, •d = (V--4-( d') - V 1 F(x)),,,.. (2.5.2t)

< i- < n, I < I < k. Each d' would appear to give rise to n -1 equations in (2.5.21), namely one
for erac diflrent i., :1,...,i,,,, but since VT- F is also symmetric, these equations are identical under
permultation or i.e, , .. , ra. Thus it can be assumed withoutt loss of generaity that i2 3 i,._ , so
that each dt actually gives rise to I,,,,_ equations in (2.5.21). It follows that (2.5.21) is a set of k(n+,m2)

equations in ( I) unknowns.

.1n
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The usual approximation method would again choose d' el. It is easy to s e that k evalations of
V' - I F with these d' (directly) detrinines every entry ofi m whose smallest subscript is at most. k. If an
entry of ftm has all its subscripts greater than k, then its subscripts are effectively an M-elcction from the
set {k+i- 1,k-t-2,...,n} of cardinality n-k. Thus ;,I-m: - out of the ("*,, .) tot;ti unknowns
arc not determined by the k evaluations along the unit vectors, so that (" mm-) - I) unknowns
are determined. The proof of Theorem 2.5.1 leads to the conjecture that at most this number of unknowns
can be determined by general d' as well, and indeed the following theorem is the proper generalization of
Theorem 2.5.1.

Theorem 2.5.8: When approximating V m F (possibly with sparsity conditions) by finite-differencing
V'-'F along directions d',d ,..., d;, at most

tu (i+m r-I) (n -k + m -1rnmk
m Mt

unknowns can be determined by the k evaluations of V" - 'F.
In particular, n evaluations are necessary to approximate V'F when it is dense. This bound is tight

for some sparsity patterns.

Sketch of Proof: This proof is very much in the spirit of the row-oriented proof of Theorem 2.5.1.
Let An"  be the k(n~_" s) X (n+m-) coefficient matrix of equations (2.5.21). As was the case in

Theorem 2.5.1, it suffices to show that rank A m  = rnmt when H is completely dense. A key ob.servation
- in the proof is the identity

(n -t- m - ( n-k~ rnI) ()In+rna- 1)k (2.5.22)it m -i 1i)

of which (2.5.4) is a specialization. This identity is easy to prove by induction.
A sequence of matrices Arnn = ZZ .... Zm can be defined with entries from the d', where Z i is

(M- ')(+) X J Note that the row size of Z' is the absolute value of thle ith term of (2.5.22),

and that the column size of Z' equals the row size of Z' - '. The property that the Z' are constructed to
satisfy is that Z'Z' - ' = 0, i = 2,3,...,m, so that each row of Z' is in the null space of the columns of
Z-1.

Now set d = el, which can only decrease the rank of each Z. As the base of an induction, using these
particular d' it can be shown that Zm has full row rank, namely (,). Thus, since X "' has n(n- .) rows

.* and Zm is in its null space, rank Z - < n(.-,) - ("). But with these d' a square, diagonal submatrix
of Zm' of size ?4(mki) - ( ) can be found, and hence rank Z' n - ' - - (,m), the last two terms of
(2.5.22).

At the general step it is known that rankZZ'' = - 1 l)i1n+--)-Z) and Z' has (n+ , ,

rows, so that

rankZ' < D(-0)1-i('m - 1)() (2.5.23)

But then there is a square submatrix of Zi of size (2.5.23) which is diagonal with this choice of d' , hence
(2.5.23) is really an equality, and the induction can proceed. The induction terminates at i = I which yields

rank Z' ran k A"" = n(l)I n+ m-i- 1)(k)
M =

as desired. 0
It would be mathematically interesting to obtain a similar generalization or Theorem 2.5.2.
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2.6. Reflections on Sparse Hessians

We have investigated the approximation of sparse Hessians, largely from the point or view or com-
putational complexity. Sections 2.2 and 2.3 showed that various methods that have been proposed for
approximating sparse hessian can be classified in a helpful way.

Using this classification, Section 2.4 showed that finding an optimal approximation scheme for each
subclass of direct methods is an NP-Complete problem. The theorem of Coleman and Mort (1982), which
is quoted as Theorem 2.4.9, gives a similar NP-Completeness result for a subclass of substitution methods.
Their theorem suggests that as with direct methods, all subclasses of substitution methods arc NP-Complete.
Fully investigating the complexity of substitu|tion methods is a useful topic for future research.

By contrast, the results of Section 2.5 tend to support the view that determining the minimum number
of gradient evaluations needed by a given sparsity pattern for an elimination method can be computed
by a polynomial algorithm (however, computing a set of numerically "reasonable" difference directions that
realizes the minimum may be much harder). Thus in passing through the spectrum of approximation methods
from direct methods (simple, stable, large number of evaluations) to elimination methods (complicated,
possibly unstable, smallest number or evaluations), a boundary between NP-Completeness and polynomial
algorithms seems to be crossed between the substitution methods and the elimination methods. Clearly more
work nceds to be done to establish the truth or falsity of Conjectures 2.5.3 and 2.5.4.

An intriguing additional reason to study Conjectures 2.5.3 and 2.5.4 is that very few examples are
known of sparse Hessians where an optimal elimination method uses strictly fewer gradient evaluations
thaui an ot imal substitution method. The standard (and apparently, essentially the only) example of this
phenomenon is (2.5.11) (though it is likely that all complete graphs without loops also fall in this class).
It is not clear whether such examples are inherently rare, or whether there has been insufficient work in
constructing them. If such examples are rare, then establishing the truth or falsity of Conjectures 2.5.3
and 2.5.4 is even more important since the ability to compute "Y(I) for a substitution method would be a
valuable guide for a substitution heuristic. On the other hand, if such examples are common, being able to
compute 1(I1) might aid in searching for them.

Though practicalities have been mentioned along the way, our emphasis has been on complexity rather
than computation. Thus the reader may still be uncertain as to what method to choose to approximate a
sparse Ilessian. The direct methods reported in Coleman and Mor6 (1982) are simple, numerically stable,
and very fast (both in finding the groups and in approximating II given the groups), and empirically give
fairly good results (see their 'rable ,4.1). Substitution methods are inherently less numerically stable than
direct mne.hods, though Powell and Toint (1979) show that the accumulated error in a substitution method
cannot grow too fast. The triangular substitution methods in Coleman and Mor6 (1982) are almost as
simple as their direct methods, reasonably numerically stable, fast in finding the groups, somewhat slower
in solving for H given the groups, but empirically use significantly fewer gradient evaluations than their
direct heuristics (compare their Tables 4.1 and 8.1). To our knowledge, no general elimination methods have
been proposed. Except in special cases, such as the complete graphs without loops mentioned in Section 2.5
(which efrectively use a substitution method except for solving systems like (2.5.11)), elimination methods
are expected to have such potentially unreliable numerical properties as to make them practically useless.
At this point, the triangular substitution heuristics in Coleman and Mor6 (1982) seem to be the best for
general usage.

This chapter has resolved many of the previously open questions about approximating sparse lessians.

lowever. much work remains before the subject is completely understood.

4,



Chapter 3

Making Sparse Matrices Sparser

3.1. Introduction to Making Matrices Sparser

Many large-scale constrained optimization problems are of the form

min F(z)
s.t. Az=b (3.1.1)

I <z < t,

where 1, it, x E R", F:R - R and A is an m X n matrix. This is a linearly constrained problem with
bounded variables. Usually m is less than n, and hence there are many X that satisfy Ax = b.

Quite large problems of the form (3.1.1) have been solved, some with m > 10,000, n > 50,000 (see,
e.g., flillier and Lieberman (1974), pp. 180--181). If such an A were dense, then storing and accessing its
entries would cause an optimization program to be painfully slow.

The reason that very large problems can be solved in practice is that they are sparse; most of the
entries or A are zero. A rule of thumb that is used in some applications is that an average column or A
usually has lcss than ten non-eros in it, often less than five non-zeros. A matrix with the above dimensions
would be expected to have only about 500,000 non-zeros, a decrease or three 6rders or magnitude from the
number of possible entries.

Define the density of a sparse matrix as the fraction of entries of A that are non-zero. Thef when
n - O(rn), the number of possible entries or real-life matrices is O(Vm') whereas their number or non-Aeros
is only O(n), so that their density is 0(1/m).

To take ndvantage of sparsity it is necessary to store i and j along with ai., thus incurring a storage
overhead, but a relatively small one (matrix indices can often be stored in many fewer bits than numerical
values). The necessity of manipulating the indices makes some simple sparse matrix tasks quite complicated.
For example, it can be non-trivial to transpose a sparse matrix in some representations (see Custavson
(1973)). Programs for processing sparse matrices are therefore much longer, more complicated and harder
to develop than for their dense counterparts.

Nevertheless the immense savings in execution time over comparabe dense algorithms warrants taking
account of sparsity lBy exploiting sparsity, much larger problems have been solved much faster than they
have would been otherwise. Indeed, the largest problems could not effectively be solved at all without sparse
matrix techniques.

Sparse methods are not faster than dense methods simply because there are many fewer numbers to
keep track of. There is another, more subtle phenomenon working in favor of sparsity. Consider solving the
-yst.fn of linear equations

Bz = b (3. 1.2)

when H is m X m and non-singular. The usual dense G'ausiamn elimination procedure takes O(m2 ) time.
Since the number of entries or is m 2 , the execution time is superlinear in the amount of data.

Now consider solving the same system when B is sparse, assuming 0(m) non-zeros. It has been
empirically observed that a well-implemented sparse Caussian elimination technique takes only 0(m) time
(see Duff (1977), Table 3). This observation is true partly because even real problems without apparent
structure seem to have some hidden structure, though in a way that has resisted quantification. It seems
doutf'ul that such good rosults would be obtained on matrices whose non-zero entries were randomly located.
Thus in a typical sparse sittiation, linear equations can I- solved in Lime linear in the anmount of data.
Since solving linear 'qaitions is a ubiquitous operation in optimisation, such an improvement represents a
significant speed-mp compared to the dense. case.

26
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Since the Lime required to perform many kinds of sparse matrix operatiotis is proportinial to the number
of non-zeros in A, trying to make the given sparse linear constraiits Ax = b even sparser s-ems to be a
natural problem to solve. That is, instead of accepting Lhe dcrc of sparsity in the mode .ts formulated,
it might help to increase the degree of sparsity (decrease the density). More succinctly, since sparsity is a
virtue, sparser should be better.

An obvious application of such an effort is that in solving (3.1.1), optinim.Lzion rot,ire.. solve many
systems of linear equations like (3.1.2), where B varies over various subinaLrces of A (see C(ii, Murray and
Wright (1981), Chapter 5). Thus, if A were sparser, the various /B's would (on average) be sparser. Since
execution iime depends on number of non-zeros, the speed of optimization would increase.

A less obvious application is when the linear constraints of (3.1.1) are replaced by non-linear constraints
c(x) = 0, where c is a function from R" to R'. Such non-lincarly constrained problems arc ofte1 sparse in
the sense that the Jacobian of c(x) is a sparse matrix, and its sparsity pattern (zero/non-zero tructture) is
independent of z. An algorithm that is able to make a matrix sparser using wily its sparsity pattern could
therefore be useful for non-linear problems.

These possible applications lead to considering the

Sparsity Problem (SP): Given
Az =b, (3.1.3)

find an equivalent system
S= b) (3.1.4)

which is as sparse as possible, where equivalent means that the same set of x's satisfy both systems.
From simple linear algebra, (3.1.3) and (3.1.4) are equivalent if and only if A = TA and b - Tb for some

m X m non-singular matrix T. Thus, solving SI' is equivalent, to finding a 7' that minimizeb the number of
non-zeros in TA. This chapter explores some ways to solve SP in theory and in practice.

3.1.1. Relationship to Bipartite Matching

The methods that we shall use to solve SP involve bipartite matching theory. There is a simple
correspondence between bipartite graphs and sparsity patterns of rectangular matrices. When we write
a sparsity pattern a zero is represented by "0" or a blank, and a non-zero by "X". Civ,, the sparse
matrix A, define the bipartite graph B by setting the left nodes of B - { rows of A }, tl .ight nodes of
B { columns of A }, and the edges of B = { { i,3 } $ 0}. For example, if

A = (X X , te

This correspondence allows us refer to sparsity patterns and bipartite graphs interchangeably. In this chapter
sparsity patterns will be displayed as matrices, but the language of bipartite graphs will be used to describe
them.

A .,.bset P of the non-zeros of A such that no two elements of P lie in the same row or column is
classically known as a partial transversal (see Welsh (1976), Section 7.1). A partial transversal corresponds
to a (not necessarily maximum) matching (see, e.g., Lawler (1976), Chapter 5) in a bipartite graph (i.e.,
a subset of edges with no common vertices). For example, the circled transversal corresponds to the heavy
matching in the bipartite graph B:

A= (0 0 , B

X0 0

We shall favor the term "matching" even though it is historically inappropriate for matrices.
A matching in A is called row-perfect if all rows of A are in the matching; column-perfect is defined

similarly. A matching is perfect if it is both row- and columi-perfect. A maximum matching is one
with a naximum number of non-zeros. Ir it c ( 1,2 . . , m } and C C { 1,2,..., n } then AR'C denotes tile
submatrix of A indexed by rows in It and columns in C. Let C(A) { non-zeros of A ), and Iet M(Aic) be
the size of a maximum matching in ARC; M(A,?:) is sometimes called the term rank or All(: (see Rtyser
(1963), Chapter 5). An important property of maximum matchings that will be used repeatedly is stated in
the following proposition.
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Proposition 3.1.1s It A is a maximum matching in A, the rows and columns of A call be permuted so
that A can be partitioned as

(3.1.5)

where M C E(C) U C(D); M n C(C) is column-perfect for C and is row-perfect for C if and only if M is
row-perfect; and Mnel(j,,) is row-perfect for E and is column-perfect for E ir and only if N is column-perfect.
0

This proposition follows from the Koinig-Egervary Theorem (stee Ityser (1963), Theorem 5.1). As an
example of Lhe proposition, consider

IX

X Ix X)

with the circled maximum matching. The matching is not column-perfect for E, nor for A, but it is row-
perfect ror both C and A.

3.1.2. Possible Approaches to increasing Sparsity

Two possible asumptions can be mnade in dealing with sparse matrix problems like SP. The flrst is that
al~most all the information about A is contained in its sparsity pattern, and almost none is embodied in the

tlual values or the non-zeros. This assumption is used by the graph models of the location or fill-in during
.o~arse Causqian elimination which occur in theorems about the complexity of minimizing ill-in (see Problem
CT461 in Carey and Johnson (1979)).

Tlhe complementary assumption is that the non-zero values have a structure that can be exploited in
%)lvitig SIP. This assumption would lead to an algorithm that would try to discover numerical relations among
the vion-seros in an effort to increase sparsity. An example of this assumption as used for a different problem

* vis the work of llixby arid Cunningham (1983) on solving linear programs faster by finding large embedded
* networks.

We shall use the first approach in this chapter. Indeed, in the application to non-linear constraints
discussed above, no other approach is possible since there is a fixed sparsity pattern with changing numeric

* entries.

3.1.3. Overview of this Chapter

Section 3.2 opens with a discussion of why SP is difficult without making a generality assumption. A
rigorous definitioni or the assumption used in thle rest of the chapter is then given, and is applied to derive
oolytomrrial algorithris to solve RP. With the assumption, a polynomial algorithm is constructed that solves
ar, ivportant subproleon of sI'. the One Rtow Sparsity Problem. Thin algorithm is at tie heart of all thle
ot'her algorithms.

In Section 3.3, thve One Row Algorithm of Section 3.2 is used to derive two polynomial algorithms
for solving SP. one or the algorithmns is important for theoretical reasons, and the other can be modified
into a practically im plemnentable algorithmn. Some theoretical consequences of these algorithms for Dulmage-
Mendelsohn decomposition and for evaluating the complexity of mnatroid algorithms are also derived in
.wr'.ion 3.3.

4 ~lThese algorithmns are developed itito a more practical version, in Section 3.4. This section also considers
what happens whven the practical algorithin is usmed to process real prolemns that do niot satisfy thle generality
.uus11titptioli, and it is shown that tile Pecrformance of the practical algorithms can be no worse than the
perforinance of thle theoretical algorithins. Finally, it reviews some implementation techniques that can
greatly speed up the algorithm.
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In Section 3.5 some computational results are discussed which were obtained from a test implementation
of the algorithm based oil the considerations of Section 3.4. While the test results are from a .sliuAl sample of
problems and are therefore preliminary, they are still encouraging for the eventual practical implementation

of the algorithm.
Finally the current status of this research is reviewed in Section 3.6, with suggestions about some

directions for future development. Particular attention is paid to possible enhancements of the algorithm
that might increase its applicability.

3.2. The Matching Property and the One Row Algorithm

In this section and in Section 3.3 it is a-sumed that twe matrix A in (3.1.3) has full raiak. The effect of

removing this assumption is considered in Section 3.4.

3.2.1. The Matching Property

To illustrate the pitfalls in trying to solve SP solely from the sparsity pattern of A, coru,,der W.me following
sparsity pattern:

X X 0 0 0C ox x x (3.2.1)

0 0 xx X)

In order to make the first row sparser, a multiple of the second row could be added to Lhe. frst to zero out
the 1,2 position. However, it appears that the 1,3. k,4, and 1,5 entries fill-in (change front a zero into a

non-zero) because of this operation. To mitigate the fill-in, the multiple of row 3 that turns entry , 3 back
into a zero could be added to row 1. The combination of these two row operations gives the same effect as
if the boxed submatrix of (3.2.1), which is certainly non-singular, was used to turn the 1, 2 entry into a zero
while keeping the 1, 3 entry zero. The expected result isx! 0 0 , x

0 X X X X,
00 X x x

which is not sparser.

Consider now the following two matrices with sparsity pattern (3.2.1), transformed as .bove.

) 1 0 0 0

TA(OA~ I ~ 7 (1 0 00 0~TA' 11 0 1 I 1 1

I I0

0 I -1 0 0 0 ( 0 0 -1 -

TA =0 1 01 1 2 3J = 0 1 1 2 3

(0 0 l/(0 0 i ! 1 ' 0 I 1/

In the second case, the sparsity decreased as expected, but in the first case, the sparsity imcreasied. The
reason for the unexpected behavior of A' is that the boxed mhimatrix has rank only I, not 2, which caused

cancellatioi .o occur in col1iuilns 4 and 5. When a gratuitous Acro appears outside the colullnis we were trying
to affect (in the example we were trying to alTect column.s 2 and 3, ,umd For A' gratuitous A'ros appear( in
columns 4 and 5), we say that unexpected cancellation has occurred.

Predicting unexpected cancellation can be extremely dilicult. The next theorem show% that allowing
unexpected cacellation imakes Sl' crseittially intractable.

I-A
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Theorem 3.2.1: It is NP-Hard to solve SP.

Proof: This theorem and its proof are due to Stockmeyer (1982). It is claimed only that SP is NP-Ihard, rather
than NP-Complete, because it is difficult to show that SP is in NP. However, Stockmeyer has conjectured
that SP E NP (see Carey and Johnson (1979) for the definition of NP).

The problem that we shall reduce to SP is

Simple Max Cut: Civen an undirected graph = (V, E), partition the nodes of 9 into P and V \ P
so as to maximize

{{,j} E I I iE P,j E V \ P}I.

A proof that Simple Max Cut is NP-Complete is referenced in Carey and Johnson (1979) Problem
IND1I6.

Let n = 'V', m = IE, let A(g) be the usual (0, 1) vertex-edge incidence matrix of 9, and let Ai be the
n X 2m matrix which is all zero except for row i, half of whose components are +1 and half -1. Let e be
the 2m-vector of all ones and let f be the (2m(n + 1) + 1)-vector of ones. Suppose that SP could be solved
for the matrix

A(g) A, A2 An )

Define T" to be a matrix so that TB(3g) is an optimal solution to SP. Since T* is non-singular, it must
have a perfect matching, which can be assumed without loss of generality is on its diagonal. Also, since T"
stays optimal after row scaling it can be assumed that T" has unit diagonal. Because of the size of f, it
is never worthwhile to use row 1 when reducing any other row, and hence the first column of T" must be
(1,0,..., O)T . Thus no choice for the remaining entries of the first row of T" can cause it to be singular.
Because of the coltimn size of the Aj, and since all entries are ±t, it is helpful to use every other row in
reducing the first row. Hence, the first row of T* must be (1,q,E2,...,,,), where e, = ±1 for all i E V.
Let I' { i I f. = 4 1 }. Then the number of non-zeros in the first row of the reduced matrix or 11(9) is
clearly

(2m(n - 1) + 1) + in+ (m - 1 {i,j}C E:i E P,j E V \ P}I). (3.2.2)

But since (3.2.2) is minimized by the optimal T, P also solves the Simple Max Cut Problem for 9. 0

This proof works because of the great opportunity for unexpected cancellation in a (0, 1)-matrix. The
Droof shows in particular that any numerical approach to SP must be heuristic, rather than aiming for
optimnality. lit order to "combiatorialize" SP and bring it back into the class of polynomial algorithms, an
wsssumption about the non-zeros of A is needed that effectively rules out unexpected cancellation.

As motivation for the assumption that will be used, consider the following chain or implications about
an n X n matrx R:

rank B)= n t det B #06 0 sgnu Hbi., #0
U I

= there is a perimutation o such that b, p,,b2 .,...,b,a. # 0 (3.2.3)

t* B has a perfect matching.
As the example of A' showed, unexpected cancellation is caused by submatrices whose rank is less than

that suggested by their sparsity pattern. The notion of what rank "should" be turns out to be that if a
submatrix can be permuted so that it has a non-zero diagonal, then it should have full rank. Since having
a non-zero diagonial is the condition in (3.2.3), rank is what it should be if the implication in (3.2.3) goes
backwards as well. ihat is, if I has a perfect matching, then it should have full ranik. Such "generality",
"non-degeneracy", "general position" or "independence" is often assumed in sparse matrix studies. A formal oi
statement of this property is:

Matching Property (MP)% A has (MP) if rank ARC M(ARC) for all row sbsets It and column
subset. C.
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In other terminology, (MI') states that term rank and numerical rank are the same for every submatrix

of A. In thc example Above, A' has (MP) but A' does not (it fails precisely on the boxed sulnmatrix).
It is interesting to consider how (Mil) relates to other possible assumptions. A very strong assumnption

would be that the non-zeros of A act essentially like independent algebraic indetersina.s. That is, any
entry of the result of auy linear algebraic operation on A cat be expressed s a multivariat, polynomial in
formal variables zX, one for each non-zero of A. An cutry of the result is considered t) be zero only if its
multivariate polynomial is identically zero- Algebraic independence implies (and therefore is stronger than)
(MP).

- A similar assumption would be that each non-zero of A is perturbed from its original value by an
'. independent infinitesiial, similar to the construction often used to resolve degeneracy. This perturbation
" assumption also implies (MI'). Thus (Mi) is weak relative to other such assumptions.

Although (MP) is not particularly stringent, most real-life matrices do not satisfy (MI'). The reason
is that real matrices have niany entries which are small integers, thereby producing sabiaatrices which p
violate (MP). We shall nevertheless construct an algorithm to solve SI' assuming (MP) because Theorem
3.2.1 implies that there is little hope of solving St' without such an assumption. One reasonable heuristic
approach to SI' is to solve it with (MP), and then to apply the resulting algorithm to matrices which do sot
necessarily satisfy (MP). Though it is an apparent contradictiosi, such an (as yet hypoil',,:( .1) algorithm
would be an -optimal heuristic" for SI) . It woula be optimal for those matrices that satniy (MP), ario it

would be heuristic for the others.

3.2.2. The One Row Algorithm

For the reason discussed above, in this section and in Section 3.3 A is assumed to satisfy (MlV) In order
to show that (MP) implies that no unexpected cancellation can occur, some preliminary di.-, ,isiota is needed.

As noted in Secti' a 3.1, solving SP involves constructing a non-singular T so that TA is as nparse as
possible. By (3.2.3) T must have a perfect natching, and by permuting indices, it can be assumed that
every entry on tile diagonal of 7' is non-zero. Scaling tile rows of T does not affect the sparsity of TA, ar d
hence it can be further assusied that tii = 1, i = 1,2,.. ,r. With this scaling, row i of T specifies an
elementary row operation t) be performed on row % of A, namely add the other rows of A to the ith row
with the multipliers specified by the entries in row t of T Since TA is supposed to be sparber than A, its
ilh row should also be sparser, which leads to consideration of:

The One Row Sparsity Problem for Row i (ORSP,): Find { X, k $ i) so that

Aio = A. - E XiA k. (3.2.4)

is as sparse as possible.

Once ORSI', is solved, the hope is that the resulting X for row i of A can e packed into row i of T, which
can then be used to solve Si'. It is not clear that the resultant. T is non-singular as required; nevertheless,
in the rest of this section we shall concentrate on solving Ol.SI',.

A set of multipliers { X) I k > I ) for (3.2.4) when i = I delines the following isdex suibsets:

U = k (> I IX11 $40),

H = { la , = 0 and al, $0) ,

S = { j = 0 and aij = 0 and aj jA 0 for some k E U),
C II u S,

I.' -{./,,, j y 0 and a1 = 0),

= s = {j ai = oand ak, $ 0 for soni.e k C U}, and
Z = { =0).
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That is, U is the act of used rows; 11 is the set of hit columns, where a non-zero was changed to a zero; S
is the set of saved columns, where a zero that might have been expected to be filled-in (since ak, $ 0) was
not filled-in; G is the set of good columns, where the entry was actively manipulated for the better; F i
the set of filled-in columns; P is the set of potential fill-in columns; and Z is the set of zero columns. As
an example of these definitions, the index sets are indicated for the following sparsity pattern:

z
P

H S F

X X X 0 0 0 0 0 X X 00 newrw I
olde row 1

X x X x x X 0 0 0 0 0 0 oldrawlI

X XXX XX}

Sx x x x xI}) O

X X XX X X

XX X X I

X X X X X
X X X X X x

Note that the net dccrease in non-zeros in row 1 is IfI - I, so that solving ORSPI is equivalent to solving
,Iax).li - IF!.

Now (MP) can be put to work. The next theorem states the intuitive result that if k columns of row I are
affected for the good, at least k rows must be used. This theorem is the key fact that rules out unexpected
cancellation.

Theorem 3.2.2: For any X, 'G < [UI.

Proot: By contradiction. Assume that IGI > JUI.
If M(Auc) < JUI then by Proposition 3.1.1 A must look like

0

row I1

U (3.2.5)

_ _ ® I R

C

where the row stibset I and column sbset C are defined as shown. (When we say that a matrix "looks
like" a picture such as the one above, we mean that its rows and columns can be permuted so that it has
the form shown.) Otherwise (M(AIJ(;) = hI), let R = U and C G 0. In either case, A has a stihinatrix
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that looks like

,___ row I
0 1

0 I (3.2.6)

N
where R C U, C C G and IRt < JCJ. Also, the rows of iR provide the only non-zero contribution to the
new row I in the columns of C, and M(ARc) = IR. The set of columns induced by a maximum matching
in Alc is denoted by N as shown in (3.2.6).

Note that ARN is square and M(ARv) = .R, thus, by (Ml), AIN is non-suiguiar Now ALv -
XTARN = AIN = 0 since N C G, so that Xqj must be the unique solution of XTAICN - - A N. Defiue
R= Ru{1}. ForkE RletR = R\{k},andforjEC\N let N. = NU{j}. TheaCramer'sRule
implies that

Xi, = (-1)kdetA&,N fork ER. (3.2.7)

For j E C \ N (which is non-empty), using (3.2.7) and the expansion of the determinant by cofactors in
reverse, it can be shown that

, j = detAkN . (3.2.8)

Note that j E C C C implies that al, = 0. If a13 y 0, then the perfect matching in ARN can be
trivially extended by a13 to a perfect matching in AkN.. But now (MP) implies by (3.2.8) that ait $ 0, a
contradiction.

Suppose instead that a -= 0. Then j E S, and therefore there must be some k E R such that akj $ 0.
Since k E R C_ U, it follows that ),t 3 0. Thus, by (3.2.6), AU, N must have a perfect matching. But adding
aki to this matching gives a perfect matching of ARN. Once again, (MP) and (3.2.8) imply that ai, y 0, a
contradiction.

Corollary 3.2.3, M(AuG)= IG; thus, by (MP), rank AUG = CGJ.
Proof: if M(Auc) < ;Gj, then by Proposition 3.1.1 A must look like (3.2.5), which would again lead to a
submatrix of A like (3.2.6), which cannot exist by Theorem 3.2.2. 0

Theorem 3.2.2 and its corollary prove that there can be no unexpected cancellation when (MP) is
satisfied. Indeed, (3.2.6) is precisely a picture of what is meant by unexpected cancellation.

It is possible to have JUt > CGl, but it causes additional work with no further increase in sparsity. A
subset R C U could be selected that perfectly matches into G (which is possible by Corollary 3.2.3), and
the non-sero part of X computed as the solution of

XTARt = -Aa, (3.2.9)

which gives the same result with less work. Conversely, suppose that a square, non-singular submatrix ARG
is used to to zero out AlG via (3.2.9). Then Theorem 3.2.2 implies that no columns outside G are affected
for the good (either hit or saved).

Hence it can be assumed without loss of generality that jUl = JGj. Since X is now uniquely determined
by an equation like (3.2.9), U and G can be thought of as determining X rather than vice-versa. Thus ORSI',
has been reduced to the more coinbi natorial problem of findinig optimal U and C.

Since linding X requires solving a system of linear equations of size jUl, if there are several different
optimal U the smallest cardinality ovie is preferred in order to minimize work. 1'.ctually, as was mentioned
in Section 3.1, since work is proportional to the number of non-zeros, the number of non-zerem in AUG should
be minimized, but IUI makes an acceptable substitute.) Formally stated, we would ideally like to solve:
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The Strong ORSPit Find an optimal solution to ORSPi that minimizes JUI.

A little reflection over the dcfinitions of the index sets F, S, II and P reveals that they can be easily
determined combinatorially from U and G. In fact, P depends only on U (in words, P is the set of not-
identically zero colmns j of Au. such that ali = 0), and so it will be denoted by P(U). The set G merely
determines how 1'(U) is split up into F and S. These observations lead to aft easy proof that the gain of
zeros, JHI - IF!, depends only on U, not on G:

Theorem 3.2.41 Let G, and G2 be two sets of columns that perfectly match into U, and denote the set
of hit columns corresponding to Gi by Hi, i = 1, 2, etc. Then

IH, I - JFJ = jH, - ,%1.

Proof. It is easy to see that [Hi( JU - fSi and ;Fi = !P(U) - ISi[, so that IHiJ - JAI ----UI - IP(U)I,
il 1,2.

The proof shows that solving ORSP, is equivalent to solving

max!U! - IP(U)I. (3.2.10)
U

Since A has ful! rank, every U must perfectly match into some column subset G; thus, the maximization in
(3.2.10) is over all U. Define R ={2,3,...,m} and U = R \ U, and call ARz the first zero-section of
A. By the definition of P(U), ARZ must look like

P(U)

U 0 I

Ut_

~~~~1 .__ __ _

Thus every non-zero in ARZ is contained in either a column of P(U) or a row of U. Consider R and Z to
be disjoint sets whose union is the set of lines of ARZ. Then, since every non-zero of AR7 is in a line of
P(U) 'J U, AR is said to be covered hy the lines in P(U) L: U. Conversely, suppose that L is a cover of the

first zero-sectiot by lines with a minimal number of columns. Then define U -- \ { rows in L }. Since L
has a minimal ituber of colunns, the columns in I must be P(U) (otherwise a column could be dropped
from I, and it would still cover AIt,, contradicting minimality). Hence, covers by lines with minimal columns
correspond to tulsets U C R.

Hut now OltS0 hms been reduced to

6 maxlU? - 1P(U)I - (m - I) - min(]P(U)] + lUI)
U U

- (m - 1)- min IL!, (3.2.11)
1, covers Aps

so that finding a minimum cardinality cover of the first zero-section also solves ORtSP I .

The cl.mi conhinatorial du:lity theorem of Kiinig and lEgervary (Rtysr (1963), Theorem 5.1) shows
that a minimunm cover in (3.2.11) can be comnput('d via a maximumi matching in Alex:

Theorem 3.2.5: M(ARz) = min{ !, II, covers Alz ), and maximum maLchings and minimum covers
are dual combinalorial objects (which means that any algorithm that computes one must also compute the
other, at least implicitly).
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Finding maximum matchings in bipartite graphs is a well-studied problem, for which many polynomial p
algorithms have been developed. Most such algorithms lind a maximum matching by labelling. If labels
are started at the row side of the bipartite graph, then at the final iteration of a labellitig algorithm the
labelled rows and columns are those reachable by a partial augmenting path from an urinkatched row. The
dual minimum cover can be extracted from the final labels as { labelled columns } u { unlabelled rows } (see
Lawler (1976), p. 193). Since U is complementary to the rows in a nininium cover, U is the set of labelled
rows at the end of a maximum matching algorithm (and P(U) is the set of labelled columns). In matrix
terms, if the first zero-section is the matrix in (3.1.5), then U is the set of rows of C. This gives a pol%nomial
algorithm for solving ORSPi. N

There is still more juice that can be squeezed out of the maximum matching. Recall that it is preferable
to solve the Strong ORSPi, i.e., find the minimum cardinality U among all optimum U. Note that it is
easy to turn the maximum matching problem on A1~z into a network flow problem (see Section 2.5). In the
network flow context, the dual object to a maximum flow is a minimum cut. At an optimum of a network
flow problem, a minimum cut can be extracted as the set of vertices reachable from the source by a partial
augmenting path (as above for minimum covers). Iet the minimum cut computed a hiws way be called
the standard minimum cut. Since labels for maximum flow and maximim matching are isomorphic, the
standard minimum cut (standard minimum cover in matrix terms), must be equal to J U I'(U).

Theorem 3.2.6: In any network the standard minimum cut is a subset of every minimum cut. Thus the
standard minimum cut is the same for every optimal flow. ifence its definition is indepe,t .tL of th( optimai
flow used to compute it, and it has minimum cardinality among all minimum cuts (see Ford ani Fulkerson
(1962), p. 13).

Since the standard minimum cut and the standard minimum cover have.complementary sets of rows,
U is the set of rows in the standard minimum cut. Such a U is already known to solve OiRSPi by (3.2.11).
Theorem 3.2.6 states that the standard U is unique, solves the Strong ORSPi, and cait be found at no
additional expense. Returning to the partition (3.1.5), if ARZ has several such partitions in which C has
different sizes, then by Theorem 3.2.6, maximum matching automatically generates the partition in which C
has the fewest rows possible. In ae1 4ition to cutting down on the amount of work needed to solve equations for
X in practice, this theorem has important theoretical implications that are explored in subsequent sections.

Note that there is a strong asymmetry in choosing which side of the network is the source. The above
discussion applies when the maximum matching or network flow is started from the row side. if it is started
from the column side, then the largest U that is optimal for ORSP, is generated instead of the Lsmallest.

We shall now put all the pieces together into an algorithm for solving (the Strong) 01S1,.

The One Row Algorithm for Row i (ORA,):
0. Perform a maximum matching in the ith zero-section (starting from the row side).
i. Construct Ui as the set of labelled rows at the end of the matching.
2. Find a column subset Gi that perfectly matches into U, (then AUG. is non-singular by (MP)).
3. Solve XT.Au,. = -Aic,.

4. Set A . to Ai. + X,;Au,..

Note that Step 2 allows considerable freedom in choosing Gi, a point whose importance is shown later.

3.3. Theoretical Algorithms for SP

We would like to combine the local solutions to ORSi,, i = 1,2,... , m into a global solution for SP.
However, this process requires rare. For example, consider the matrix

A=( 2). (3.3. 1)

Denote the (unique by Theorem 3.2.6) optimal I for oItS' by U:. Then for (3.3.1), U - {2 } and
U; = { i ). (When the ith zero-section has no columns as in this case, tie bipartite graph of the zero section
has only lelt (row) vertices and no edges. Ilence a matching algorithm terminates after it has initially
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labelled all of the rows. Since U. is the set of labelled rows at optimality, when row i is completely dense
U: = {,2,...,mJ \{i).) At row I GL can be chosen to be {1}, giving A. (0 -1). in row 2, C,

cart also be chosen to be { 1 }, giving A2. = (0 1). With these choices the final result is

A(0 -1)

which is singular. This illustrates that the GC cannot be chosen arbitrarily in Step 2 of ORA,.

3.3.1. The Parallel Algorithm

There is a fairly natural way to choose Gi in Step 2 that avoids the potential difficulty above, and that
also saves time le, JM be a fixed maximum matching for A (.M must be row-perfect since A has full row
rank). Once C; is determined in Step I of ORAi, G, can be chosen to be the set of columns that U* matches
to under %. Note that A, the output of running ORAi for i = 1,2,...,m, equals TA, where the ith row
of T has one in the diagonal position, and is the X from running ORA elsewhere. Define T" to be the T
obtained by choosing the G, relative to . Thus when i : j, ti 3 0 if and only if j E U:.

Suppose th:t it could be shown that T" is non-singular, so that it is a valid candidate for a T to solve
SP. Then T* must be an optimal solution to SP. Consider any other candidate T, which can be assumed
without loss or generality to have a diagonal or all ones (as in Section 3.2). If T increased the sparsity or A
more than r', then at least one row of TA would have to be sparser than the corresponding row or TA.
But the optimnality of ORA, implies that every row of T*A is individually as sparse as possible. Thus T" is
optimal if it is non-singular.

The determination of the non-singularity of T* depends on the implications of the uniqueness of the U.
for the structure of T. Define a directed graph D' with nodes { 1,2,... ,m) and arcs {(k,i) ! k E U: }, so
that D" captures the sparsity pattern of T. Such a directed graph can be similarly defined for any square
sparse matrix T with non-zero diagonal.

In any d; r, 'ed graph D, node j is defined to be reachable from node i if there is a directed path from
i to j. The r,'iation

i - j " i is reachable from .j and j is reachable from i

is an equiva''nce relation that partitions the nodes of D. A class of this partition is called a strong
component ,, 3: every node in a strong component C is reachable from every other node in C. If a node
I in strong cornoorient C- is reachable from a node k in strong component Ci, then C, precedes Cj, which
is denoted C, -e C, It can be shown that the -< relation is a partial order on the strong components.

To reflect the strong component partition back into matrix terms, order the strong components of D
in a linear order consistent with -<, and order nodes arbitrarily within components. If the corresponding
principal permutation is applied to T, it induces a block lower triangular structure, where the diagonal
blocks are irreducible and correspond to the strong components. This decomposition of T is essentially
unique and is called the (square) Dulmage-Mendelsohn decomposition (or DM decomposition) of T.
rhe DM decomposition is studied more closely at the end of this section. See, e.g., George and Custavson
(1980) for details or this decotnpo4sition. For example, if

Ct C 2 C3

T = '), then D
where the devompositions of T and D are indicated by boxes. The next theorem shows that the block
triangular decomposition of T' has a very special structure.
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Theorem 3.3.1: If 1 $ i, L E U* and k E U:, then I E U:.

Proof. For ease of notation, let U - U., 17 = { 1,2,.. .,m} \ {} \ U:, ' P(U) and i = Z, \ IP(U:).
Thus U and U partition the rows of the ith. zero-section, and P and 1' partition its columns. By deiinition
of P(U) and k, the ith zero-section looks like

P

UI 0 rowk

U
U

Since 11: corresponds to a maximum matching, by Proposition 3.1.1 A,-, has a row-perfect matching, and
so at least 1U: lines are necessary to cover it. Note that since Ak.p 0 and k 9'U, Ap is a submatrix of
the k~h zero-section.

Let 1: be the standard minimum cover of the kth zero-section by lines. Recall that the standard
minimum cover has the largest number of rows among all minimum covers. Consider Lite set of lines Lk
L; U U \ P. The set Lk does not contain the columns of P, and so it might not cover A .,, which is part
of the k t

h zero-section. Since the only difference between Lk and L; is in lines passing through A.*-i, Lk
does cover the rest of the kth zero-section. But twe only non-zero rows of Asp are the rows in UL, and since
U C Las, Lk also covers the kih zero-section.

L; and Lk have the same set of lines outside An--P. Since AU- has a row-perfect matchimg, the number
of lines of L: passing through AU-p inust be at least U. The lines in Lk passing through A0-,3 are precisely
U, the minimum possible number, and so overall L, contains at most as many lines ws /.: But since L; is
minimum, bt must also be a minimum cover

Finally, note that Lk contains at lea.t as many rows as L; does. BuL since 1, is th, (unique) standard
minimum cover, L; has the ;naximum possible number of rows among all minimum covurs Thus L must
equal /,;, so that U C (rows of L; }. Taking complements gives U: * {* } I U, . {k }, which gives
U; \ {,} C Uas desired. D

In graph terms, Theorem 3.3.1 implies that if 1, k and i are distinct iodes of D*, anti ki, k) and (k. ,) are
edges of D", then (1,i) must also be an edge of When this is true of an a directed graph, it is said to be
transitively closed. Applying the theorem inductively, j is reachable from t in D" if and only if (i,j) is
an edge of D'. In terms of the block lower triangular structure of T*, this result implies that the diagonal
blocks of T* are all completely dense, and the subdiagonal blocks are either all zero or completely dense.
In particular, if i and j are in the same strong component C of D", rows t and row j of T" have the same
sparsity pattern, so that C C U u { i } = U {j }. These insights into the structure of T are crucial to
the proof of the next theorem.

Theorem 3.3.2: T ° is non-singular.

Proof: It can be assumed without loss of generality that M matches row i to column i in A, i = 1,2,..., m,
and that the indices of A and T are ordered so that T ° is block lower triangular. Since T is block lower
triangular, it suffices to show that each diagonal block of T° is non-singular.

Recall that the effect of ORA, is to make AG, = 0. By the choice of M, and G, relative to iM, G, = U:,
so that AU:, = 0. Since i 9U', the blocks of A corresponding to the diagonal blocks of T" are diagonal

matrices; the sibdiaonal blocks of A corresponding to dense subdiagonal blocks of T" are completely zero.
Titus it typical A and Ti might look like

(' :) i ') (! i)7
(0 P F * 0 D

T" A
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where "F" represents a full or dense submatrix, "D" represents a diagonal submatrix, '10" represents a zero
submatrix, and "*" represents an arbitrary submatrix.

Denote the set of indices of a typical diagonal block of T" by C. For i E C, let Uc = U, {U i}; as
discussed above, this definition is independent of i, and C C Uc. If C = Uc, as is the case with the first

two blocks in the example, then Tc.cAcc = Acc, which is diagonal, and which has non-zero diagonal since
there can be no unexpected cancellation. Since M restricted to AcC is a perfect matching for Acc, AcC is
non-singular by (MP). But then T'c = AccAc%, and so Tc is non-singular.

Suppose instead that C C UC, as in the third block of the example, and define L = Uc \ C. Thus

_ (ALL ALC
Auu -- \ACL AccJ"

The submatrix T'c satisfies the following equations by definition of T', C and L:

T ,LALL + TccACL = 0 (3.3.2)

T'ThALC + T'cAcc = Acc, which is diagonal.

Since M restricted to Aucuc is a perfect matching for both Aucuc and ALL, by (MP) both Auu, and ALL
are non-singular. Since ALL is non-singular, T'c can be partially solved for in (3.3.2) to get

T'c(Acc - ACLA-ALC) = Acc. (3.3.3)

TAcLA Ac in (3.3.3) is called the Schur complement of ALL in Aucuc, denoted

(AucuC/ALL). It is well known (see Cottle (1974), equations (2) and (4)) that when Aucuc is non-singular,

(Auclic/ALL) is non-singular if and only if A.L is non-singular. Since ALL is non-singular here, T c can

be fully solved for in (3.3.3) as the product of two non-singular matrices, implying that T~c is non-singular
in this case as well. 0

Since T* is non-singular, it can be used to transform A into A. Generating A via T" processes each
row in parallel, i.e. each row is solved relative to the original matrix rather than relative to a partially
transformed matrix. We call this procedure the

Parallel Algorithm (PA):
Find a maximum matching JM of A.
For i = 1,2,...,m

Generate row i of A from A using ORAi, picking Gi relative to .M.
End.

The results in this section make it easy to prove the next theorem.

Theorem 3.3.3: PA solves Sly.

Proof: T* is non-singular by Theorem 3.3.2. Since every row of A is made as sparse as possible in A, T*
imust be optimal. 0

3.3.2. The Sequential Algorithm

The parallelism of PA seems unsatisfactory for three reasons. First, it is more natural to process A
sequentially, i.e. by solving each row's matching problem on the partially reduced A whose previous rows
have already been processed. Second, by processing A sequentially, A can be overwritten on A, thereby
saving space. Also, it is shown later that the optimal U's can only become smaller, which saves time in
solving equations (3.2.9). Third, and most important, with IA the flexibility in choosing Gi at Step 2 of
ORAI is lost. Ilaving flexibility in choosing Gi is important when the algorithm is applied to real problems
that might not satisfy (MI'). It is important because in practice AU: 0 might be singular despite having a
perfect matching.

For these reasons, we consider the following algorithm, which overcomes the objections to PA:
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Sequential Algorithm (SA):
For i= 1,2,...,m

Apply ORA, to A, choosing G, in any way desired, as long as AU.G, is non-singular.

Replace row i of A by the generated row i of A.
End.

Note that A is dynamically changed every time through the loop in SA, so that (Ml') might no longer hold
for tile partially transformed A. However, we know of no example where (MP) fails. By the nature of ORAi,
each iteration of the loop in SA is equivalent to left-multiplication of A by an elementary transformation.
That is, at iteration i of the loop, the current A is left-multiplied by matrix E', where E' is the identity
except that row i of V' is the X from ORAi. Since all the E' are non-singular, the output matrix of SA is

equivalent to the original A.
It was easy to prove that PA produces an optimally sparse answer, but difficult to prove that its output

matrix is equivalent to the input. For SA, the situation is just the reverse. The next theorem uses the
optimality of PA to show that SA is optimal.

Theorem 3.3.4: SA produces the same final number of non-zeros as PA, and hence SA also solves SP.

Proof: The U computed for row i by ORA, in PA is still denoted by U*, and the (possibly different) U
computed for row i in SA is denoted by Ui. Denote by A' the partially reduced A at the beginning of the
ith iteration of SA (just before replacing row i), so that the original input A equals A'. The proof is by

induction on the row index i; we shall prove row by row that SA produces the same reduction in non-cros
as PA. The hypothesis Uk C U; for all k < i is also carried through the induction. At row 1, U, = U,
since A = Al, and SA and PA both reduce row I by the same amount, proving the base of the induction.

For row i, let R = { 1,2,. .. , m } \ { i } and Z be the row and column indices of the ith zero-section for
A'. Since row i has not yet been changed in A', R and Z are also the index sets of the it zero-section for
Al. Recall that L° = R \ U' U P(U:) is the standard minimum cover of A)Rz by lines. The first claim is
that I" is also a covering of A'RZ by lines. Let P Z \ P(U:). The only way for 1* not to be a cover is if
the result of a previous operation has introduced a non-zero into A'U:p (the part of the ith zero-section not

covered by L*).
Suppose that the first non-zero introduced into Au:, is in row I of U', and that it originated from row

k while processing row i < i, so that k E U1. By the induction hypothesis, U1 C U;, implying that k E U;.
Since I E U: and k Cl U, and since k clearly cannot equal i, by Theorem 3.3.1 k C U:. Since iteration I is
the first one where A , became nonr a s E U: A'- is zero. But then row k cannot introduce

a non-zero into A :-, . Thus Ac.I must still be zero, and so L* is a cover for ARz.

Now JL* = M(AkZ) (by Theorem 3.2.5)
= rank AkZ (since (MIP) does hold for A')
- rank Ahz (since A'z is a non-singular transformation of A'.)
( M(A',Z) (by (3.2.3))

JL*I (since any cover provides an upper bound for M(A 7).)

Thus CL M(A ¢), and so by Theorem 3.2.5, C" must be a minimum cover for A' z. However, L"
might not be the minimum cover whose complementary U is smallest. Since U is the complementary U for
C', and U, is the complementary U for the standard minimum cover for A'z, Theorem 3.2.6 ensures that
U( C U'. This verifies one % the induction hypotheses.

Recall from (3.2.11) that the reduction in non-zeros from solving ORSPi is (m - 1) - 1,1, where L is
a minimum cover for the 1th zero-section. The chain or equalities above shows that M(Ak) = M(A' Z).
By Theorem 3.2.5, the minimum covers for A)Iv and A' Z then have the same size, and the reduction in

non-zeros is the same for both. But time reduction in non-zeros for A'y 7 is achieved by PA, which is optimal
for row i, and so SA miust also be optimal for row i. 0

The proof of Theorem 3.3.4 produces the bonus that the sequential U's are (if anything) smaller than
the parallel U's, so that SA needs to solve snialler linear systems to obtain X.

IA
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3.3.3. The SP Decomposition

The proof of Theorem 3.2.2 shows that the U- are strongly interrelated, and that their joint struc-
ture is related to the block triangular decomposition. Block triangular decomposition was developed by
Dulmage and Mendelsohn (1963) for rectangular matrices, but our interest is in DM decomposition of square
matrices, as discussed in the remarks before Theorem 3.2.2. The theory of decompositions has recently been
considerably generalized by Tri (1983).

Let M be a row-perfect matching in A, and let'm(i) be the column to which row i matches under .
Define the directed graph DM to have nodes { 1,2,...,m} and arcs {(i,j) I aj,,$() 3 0}. We say that row
ij is reachable from row i via AM, denoted i -- j, if j is reachable from i in DV.. For example, if

.4
A 0)
(O= 0 X,

x
and M is the circled matching, then 1 - 3 but 3 A 1. Note that this concept essentially depends only on the

square submatrix of A induced by the matched columns of R. The next theorem illuminates the connection
,etween the U and DM decomposition.
Theorem 3.3.5: i E U' if and only if i -- j for all row-perfect matchings .M of A.

4

Proof: Two facts are needed for this proof. Fact 1 is that any (partial) matching M can be extended to a
maximum matching ) r that uses the same columns as Y, (see Lawler (1976), Theorem 5.4.1). Fact 2 is that
i 74 J if and ottly if the square submatrix of A induced by the columns of M can be partitioned like

M

0 row

(3.3.4)

R® row i

N

where R is the subset of rows k for which i -- k, M is the subset of columns matched under M, and
ht

N = {j'm(k)=jforsomekER}.
(Proor of ) Assume that i E U*, but that there is a row-perfect matching Nt such that i A j, and

so by Fact 2, A.M looks like (3.3.4). l,et R be M restrictd to A.N, and note that AoN is part of the jth
zero-4ection. Using Fact I, extend X to a maximum matching in the jt' zero-section, which then looks like

00 0 0 0 0 0 0 0 0 row J

unmatched

rows I
0 0

' Oi

® , rowiii

N
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Because of the zeros above the matched part or A.N, there is no way to label a row of It starting at an p
unmatched row. But then i VU*, a contradiction.

(Proof of t=-) Assume that i -* j for all row-perfect M, but that i Vl/. Since i VU;, i is not in the

standard minimum cover of tile jth zero-section. lence, the JLh zero section with a flaxiniumn matching X1 .

in it must look like -_
0 0 0 0 0 0 0 0 0 0) rowj

00

0I
rows

By Fact 1, At can be extended to a row-perfect 7 in all of" A that uses ,he same columns as Ri, so that A

looks like X & X X0 0 0 0 0 0 0 0 0 0 '1row J

00

row i

But now i j by Fact 2, a contradiction. 0

The remarks after Theorem 3.3.1 show that the U* induce a decomposition, which we call the SP

decomposition, on the rows of A. That is,

i - i *iE asnd .j EU

is an equivalence relation which induces an ordered partition on the rows of A. Stated another way, i - j
if and only ir i and j belong to the same diagonal block of T*. Because of the uniqueness of the U:, the
SP decomposition is an intrinsic or canonical property of a sparse matrix. Theorem 3.3.5 was motivated by
curiosity about the relationship of the SP decomposition to the )M decomposition, which is also canonical.
The content of Theorem 3.3.5 is that the SP decomposition is the coarsest partition of the rows that is a
refinement of every square DM decomposition.

3.3.4. The Complexity of the Null Space Problem
Another interesting theoretical conscquence of PA and SA applies to computational complexity. Our

research into SP was originally motivated by a different problem, the

Null Space Problem (NSP): Let rn < n. Given a sparse m X n full-rank matrix A, find an (n-m) X n
null space matrix Z of full rank so that (1) ZA" -= 0 and (2) X is as sparse as possible.

NSP is also an important problem to solve for large-scale constrained optimization, since so-called null
space methods need such a Z to operate efficiently (see Gill, Murray and Wright (1981), Section 5.1.3; see
also Kaneko, Lawo and Thirauf (1982) for a heuristic approach to NSI' for a subclass of mimtrices).

Suppo.i. that there were a polynomial algorithm for solving NSP (say, Algorithm Z). Apply Algorithm
Z to A to obtain an optimal Z'. Now apply Algorithm Z to Z" to obtain Z". Since A spans 6he null space
of z, by simple linear algebra ZX" must he equivalent to A. If there were any other matrix equivalent to

I
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A and sparser than Z", then Z'" would not be an optimal null space basis for Z*. Thus Z °* must be the
sparsest possible equivalent matrix to A, so that Z "' solves SP for A. In a vague sense then, SP = (NSP)O.

It is fascinating that solving NSI' is NP-Complete, even with a stronger generality assumption about A
than (MP). Soine preliminary discussion is needed to show this result.

Suppose that there is a vector z" in the null space of A that has fewer non-zero entries than any of
the rows of Z'. If z" is adjoined to Z', a dependency that includes z* is created among the rows of the
augmented matrix. If a row of Z ° which is dependent on z° in the augmented Z* is deleted, the resulting
matrix still spans the null space of A, and is even sparser than Z ° . Therefore an optimal Z* must include
a sparsest possible null-space vector.

Now consider the subset C of columns of A picked out by the non-zero entries of such a z*. Since
A.cz4 = 0, the columns in C must be dependent. By (MP) or any stronger assumption, since A.c does
not have full column rank, it cannot have a column-perfect matching. By Proposition 3.1.1 A.G looks like

C

D

with column subset D defined as indicated. The columns of D must also be dependent, but if IDI < IC1,
* there is a sparser null-space vector than z* based on D, contradicting that z* is sparsest possible. Thus A.G
* mnust look like

®C

0

where R is the set of non-zero rows in A.C. If IR + 1 < ICJ, a column of c could be dropped and the
coluimns in C would still be dependent, so that JRI + 1 = JCl. For j E C, let G, = C \{}*Then M(ARC,)
must equal I R ror all - E C, for otherwise the size of C could be iminished, again contradicting optisality
of z*. Conversely, given such a C, a null-space vector z * whose support is C can clearly be constructed.

A columin suibset C such that A.c. has- JCJ - I non-zero rows R? and such that M(ARc,) R1 ror all
*j c~ C is called a circuit of A. (It is called this because it is a circuit of Lte inatroid generatedI by the
4 columins of A. A circuit of a matroid is a minimal dependent set; see Welsh (1976).) Thus if NSP has a

polynomial algorithm, there is also a polynomial algorithm for the following problem:

The Minimum Circuit Problem (MOP): Given an m X n sparse matrix A, find a minimum
cardinality circuit of A.

The size of., minimum circuit of A is called the girth of A.

Theorem 3.3.6: MCP is NP-Coaplete, an et thus NSP is NP-plard.

"roof: This proof is due to Stockneyer (1982). the problem that we shall reduce to MCP is

The Mn-Clique Problem: Given an undirected graph deterine whether 9 has a clique of size m
(a clique is a nodce-induced complete graph; see Bondy and Murty (1976), Section 7.2).
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A proof that the m-Clique Problem is NP-Complete is referenced in Carey and Johnson (1979), Problem
- - [CT191.

Given a graph g with v vertices and e edges, construct a (v + (7) - m - 1) X c sparsity pattern A(9)
as follows. Index the lirst v rows of A(g) with the vertices of 9, and its columns with the edges of g. Make
a,j k) # 0 when i or i = k, so that the first v rows of A(9) have the same sparsity pattern as the
vertex-edge incidence matrix of 9. For row i > v, set aie 4 0 for all e.

Suppose that A(g) has a circuit C with JC = c < (7). Let d - (7) - c, so that d > 0. Since C is a
circuit, A.c has c - I non-zero rows. Because the (72) - m - 1 non-vertex rows are among these, A.C has
(c - 1) - ((-) - m - 1 m - d non-zero vertex rows. Denote the set of such rows by It, and denote by
f the number of edges in the subgraph of 9 induced by the vertices in It. Since IR = m - d vertices can
induce at most (-2 d) edges, f < (m-d). But surely all the edges in C are among those induced by R, so

that f _ c = (7) - d. Putting these inequalities together yields (7) - d < e < (md). However, it is easy
to show that when r n> 3 (which can be assumed without loss of generality), (7) - d> ( 2 )

Thus every circuit C of A(9) must satisfy JCJ > (7). Suppose that g has an m-clique, say on the vertices
in theset R (so that Ill = m), and with the (7) edges in theset C. Since IRI+(number of non-vertex rows) =

(2) -1= JCJ - 1, it is easy to verify that C is a circuit.

Conversely, suppose that A(g) has a circuit of size (7), and let R be the m non-zero vertex rows in
A.c. Let f again be the number of edges in the subgraph of g induced by R. As above, it must be true
that f > jCl = (7). But m vertices can induce at most (7) edges, implying that f < (7). Hence f = (7),
and the vertices in R are an m-clique.

Thus .g has an m-clique if and only if the girth of A(9) is ('). If there were a polynomial algorithm for
MCP it could be used to determine the girth of A(9), and thereby determine whether 9 has an rn-clique.
But the m-Clique Problem is NP-Complete, and so MCP must also be NP-Complete. Therefore solving NSP
is NP-Ilard, since (as shown above), solving NSP also solves MCP. 0

This theorem establishes the somewhat surprising result that, under the assumption (MP), NSP is NP-
lard even though SP = (NSP) 2 and SP has a polynomial algorithm. lence complexity is not preserved

under taking "square roots."
This analysis also has a connection with a different area of complexity research. Ilausman and Korte

(1981) have investigated the relative power of various matroid oracles in order to improve understanding of
the complexity of matroid algorithms. They have shown that a girth oracle is strictly stronger than any
other matroid oracle studied. It was previously known that there is a polynomial girth oracle for graphic
matroids (see ltai and Itodch (1978)), but no polynomial girth oracles have been discovered for any more
complicated classes of matroids. The matroids generated by the columns of sparse matrices satisfying (MP)
are transversal matroids (see Welsh (1976), Section 7.3). Transversal matroids are one of the simplest classes
of matroids besides the class of graphic matroids, yet Theorem 3.3.6 shows that it is extremely unlikely that
there is a polynomial girth oracle for transversal matroids. Perhaps this is why girth oracles are so powerful.

3.4. Practical Algorithms for SP

We now consider using the algorithnis of Section 3.3 to process real matrices. The behavior of the
algorithms when A does not have full rank and when it does not satisfy (MP) is investigated. Various
modifications to the algorithms that decrease their running time in practice are also discussed.

3.4.1. Processing Rank-deficient Matrices

The first step in developing a more practical algorithriu than PA or SA is to drop the assumption that
rank A = m. The object of solving SI' is o lind a sparser matrix A that spans the same row space. Therefore,
when A is rank-deficient an algorithm should select a row basis for A, delcte the remaining dependent rows,

and use PA or SA to make the row basis optimally sparse. The next theorem shows that while (Ml') still
holds, the answer obtained is independent of the choice of basis.
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Theorem 3.4.1: Both PA and SA produce the same final number of non-zeros when applied to any maximum
independent subset of rows of A.

Proof: By Theorem 3.3.4, it suffices to prove the theorem for PA. Any two bases are connected by a sequence
or row swaps, and hence it is sufficient to consider two bases that differ only by a swap.

Let BI be a subset of rows which is a basis for A, and let r and a be rows with r E BI, a B 'B such
that B2 = BI U { q } \ { t } is also a basis for A. We shall show that PA produces the same final number of
non-zeros when applied to An,. and AB,.. Since (MP) is still assumed, rankA = M(A) = JBtJ = IB2I.

Let i E BI \ { r }, and let Ik be the size of a minimum cover of the it h zero-section in AB,., k = 1,2.
By (3.2.1) it suffices to show that It = 12. Define U, U and P, P so that they partition the rows and columns
or the & zero-section of Ao,. as before, and hence U = U- (of An,.), etc. Recall that LI = U U P is the
standard minimum cover of the ith zero-section of AB 1. by lines, so that It - ILI1. The ith zero-section of
AB 1. with a maximum matching .M and row a adjoined must look like

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rowi

I®

x X X 0 0 0 0 rows

P E N

F

By Fact I of Theorem 3.3.5, .M can be extended to a perfect matching 9( of all of An,. that uses the
* same columns as XM Hlence it car: be assumed without loss of generality that .M is part or a row-perfect

matching of A,.. Thus row a mnust be zero in columns in N (the unmatched columns), for otherwise 9I
could be trivially extended to row a, contradicting the fact that BI is a basis.

Define E to be the columns in P' where row a is non-zero, as shown above. Let Ai be .M restricted to
Aup. Try to extend NM by labelling in the submatrix AUu(i.}p.. Since AUU(i,y is zero, MI cannot be so
extended, for otherwise )q could be extended. Define the submatrix of labelled rows and columns of A~p to
be R; clearly E' ('' { columns of I? I. and by the properties of the labelling process, B must be square. Note
also that the rows of P? must be zero in tile columns of 73 \ ( columns of 11), for otherwise more rows and
columns would have been: labellud. Thus the picture has now become

9®



Section 3.4.2 Processhig Matroccb without (MP) 55

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 of rowS

®0
0

U 4
___® 0 _ _ _

IX X X 0 0 0 010 0 0 0 0 0 rowa

Define L2 = Li U (columns of B} \ {rows of B3). By the above remarks, L 2 must cover AU{.s,. ,

and so it also covers AB... Note that ILf jL 2 ; = ii. Since L 2 is a cover of the ith zero-section of AB..,
12 can be at most I,. Now repeat the argument, reversing the roles of B, and Bg, and of r and a, obtaining
11 _ 12. Thus 11 = 12, and consequently PA produces the same result on row i with either BI or B2 .

It remains only to show that PA produces the same final number of non-zeros for r in Ali. as it does
for a in AB,.. Note that row r might have a different starting number of non-zeros Lhan row a. It is only
claimed that the final answers have the same number of non-zeros; if, say, row r bab more initial non-zeros
than row s, PA must eliminate more non-zeros from A,%. than from Ai,. to obtain the same final number
of non-zeros.

Let M be a perfect matching in ABo, and adjoin a to AB,°. Now try to extend M in AHu(,), by
labelling as above, starting at a, again obtaining a square submatrix B of AB,. such that the rows of B are
zero outside the columns of B. Thus the picture must look like

0 B
0 row r

0®
0

0

IX X X 0 0 0 0 0 0 0 rowa

Since a can be exchanged for r while maintaining a matching of size I B, r must be among the rows of B.
But B has a perfect matching, so that PA can clearly use all the rows k # r in B to eliminate all but one
non-zero from row r, and this use of rows is optimal. By reversing roles again, the transformed row a in
ABS. must also contain only one non-zero. Thus PA produces the same result using either I or B2. 0

This proof shows, however, that jUI can be different for B, and B12, and so one basis might be best in
terms of requiring the least amount of work. Unfortunately, we know of no way to determine such a basis.

3.4.2. Processing Matrices without (MP)

The next step towards practicality is the major one of dropping (Ml'). Though the use of (Ml') as
a tool to derive an algorithm is quite justified, it does not follow that (MlP) is actually satisfied by most
real matrices. Indeed, the results in Section 3.5 show that none of the real matrices IA-sted satisfies (Ml').
Now (MP) is formally renounced as an assumption. To simplify matters at first, assume once again that
rank A = m.

Without (MP), as was discussed in Section 3.3, PA is unuseable in its present form. To reiterate, it
is unuseable because PA assumes that any square submatrix selected by a fixed row-perfect matching is
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non-singular, which is no longer necessarily true. In contrast, SA has great freedom in choosing the (i. The
advantage of SA over PA is that SA can choose Gi by a numerical criterion rather than a combinatorial one.

To see how SA chooses G, in practice, first note that since A (or a basis of A) starts out with full row
rank, and since A is multiplied by a sequence of non-singular transformations as SA progresses, at any point
in the execution of SA, and for any row subset U, rankAU. = IUJ. Thus Au. must always have some column
subset G such that AUG is non-singular. At the appropriate point of SA, AU. is passed to a subroutine
that can numerically select a G so that AuG is non-singular. A subroutine that can perform sparse LU
factorizations of rectangular matrices is ideal. In the experimental implementation described in Section 3.5,
a state-of-the-art Harwell black-box subroutine called MA28 is used for this purpose (see Duff (1977)).

A further benefit of choosing G numerically by an LU-factorization is that it neatly combines Steps 2
and 3 of ORAI. That is, since the factorization routine selects the G such that the LU-factorization of AUG
was was computed, solving for X at Step 3 of ORA becomes quite easy. Also, a good factorization routine
like MA28 chooses G so that AUG is fairly well-conditioned. This property gives some assurance that the
reduced A is not much worse conditioned that the original A.

The above method of implementing SA enables it to reliably process real matrices. When SA is applied
to a real problem A, we would ideally like to guarantee that it reduces the number of non-zeros of A at
least as much as if A did satisfy (MP). That is, for a given sparsity pattern A, there is a well-defined
reduction in non-zeros r po'sible by either PA or SA, independent of the values of non-zero entries of A,
as long as they satisfy (MP) (indeed, it is possible to run either PA or SA on a sparsity pattern totally
combinatorially, without doing any numerical operations whatsoever). Not satisfying (MP) means that
unexpected cancellation can happen, and it. seeoms th .such cancellation could only help. lence it should
be possible to show that at least r non-zeros are eliminated.

However, proving such a guarantee is somewhat subtle. Consider the full-rank matrix

A=(2 1 4 0 0
O5)

The Sequential Algorithm chooses U - { 3), and could choose G1 = { 2). The associated transformation
unexpectedly zeros out columns 4 and 5 of row 1. If row 2 is processed using the new row 1, SA chooses
U2 = { 1 }. But the parallel U2 = 0, which does not contain U 2 as required by the induction hypothesis of
Theorem 3.3.4. Since the performance of SA depends on the hypothesis, it can not be guaranteed that SA
eliminates as many non-zeros as the ideal. (A close reading of the proof of Theorem 3.3.4 reveals that this
difficulty can arise only when rank ARZ < M(ARZ) for some zero-section; in the second zero-secti~n of this
example, rank ARZ = 1 < 2 = M(ARZ).)

A simple trick avoids this difficulty. As SA executes, at each step it can recognize where non-zeros are
expected to occur for subsequent steps. Unexpected cancellation can be recognized in two ways. First, if the
current row is i and ai. 3 0, j 'Gi, but ii = 0, SA has a lucky hit. Second, if aii = 0 and j E P(U) \ G
(the expected fill-in columns), but ai& = 0, then SA has a lucky non-fill-in. When unexpected cancellation
occurs, SA can put a phantom non-zero in that entry of the matrix (a zero that is treated as if it were a
non-zero). That is, subsequent matchings are performed as if no unexpected cancellation ever took place,
although SA keeps track or which "non-zcros" are really zeros. As long as A initially has full row rank, the
numerical operations can never create a dependence among the rows. Thus SA can always find a G so that
Ajru is non-singular, even with phantom non-zeros. When SA is modified by using phantom nion-zeros, it is
called the Safeguarded Sequential Algorithm (SSA).

Theorem 3.4.2: SSA eliminates at least as many non-zeros from any full-rank matrix A as it would if A
satisfied (MP).

Proof: The proof of Theorem 3.3.4 becomes valid once again with SSA, which yields the guarantee. 0

Of course, it is powsible to apply SA on real problems without safeguarding by keeping phantom non-
zeros, but the guarantee of Theorem 3.4.2 is lost. Letting SA "know" about more zeros by removing the
safeguard might give it freedom to produce greater reductions, but the experiments in Section 3.5 show no
clear advantage for either SA or SSA.
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Now we drop the assumption that rankA m once again. The following example shows that Theorem
3.4.1 is no longer true:

A 1 0 0

A00- 0 0 -1 1 "

0 -1 0 0 -1

Though &.(A) = 4, rank A 3, since the sum of the rows is zero. If the first row is dropped to get a full-rank
submatrix, then neither SA nor SSA eliminates any non-zeros from A, for a final Ltotw of 7 non-zeros. If the
last row is dropped, then once again neither SA nor SSA reduces any noa-zeros froin A, for a linal totat of
8 non-zeros. We know of no way for choosing a basis of A that maximizes the final number of non-zeros.
We conjecture that the difference between bases is negligibly small in practice, so that this issue would be a
major concern. The truth of this conjecture has not yet been empirically tested.

3.4.3. Miscellaneous Modifications to SA

The first step in any implementation of SA or SSA must be the determination of a row basis for A.
As discussed above, a routine such as MA28 is ideal for this task. If a row basis is determined through an
LU-factorization as in MA28, an important side benefit can be realized.

Note that an LU-factorization picks out a square submatrix ARC of A such that JR - =
rank ARc = rank A. As SA or SSA processes AR., the partially transformed ARC remains non-singular
just as AR. does. Thus, when the algorithm needs to search Au. for a non-singular submatrix AUG, it can
restrict its search to Auc. Since 1C' is usually much smaller than n, such a restriction can lead to large
savings in time if Auc instead of Au. is factored to find G. Of course, restricting the columns in which G,
can occur also restricts the freedom of the factorization routine to choose a well-conditioned Gi, but since
ARC is chosen to be reasonably well-conditioned, the restricted Gi should not be much worse conditioned
than the unrestricted Gi. This modification is called the restricted column option. The results in Section
3.5 report on its performance.

There is another modification that can speed up the combinatorial parts of the algorithms. All of the
combinatorial effort of the algorithms involves computing maximum cardinality matchings in zero-sections.
Instead of starting each such matching from the empty matching, it is faster to initialize them as follows.
Start by finding a one-time fixed maximum matching for A, call it A. Then initialize the matching in the
ith zero-section with A restricted to the columns of the zero-section. An entry in ( might be eliminated
at some point during execution of the algorithm. If this should happen, a single augmentation of 4 before
the next iteration restores A to a maximum matching. This method of initialization is called warm-start
matching.

With warm-start matching a good bound on the combinatorial running time of SA and SSA can be
derived. Let v be the number of non-zeros of A, which can be assumed to be greater than n. Finding the
original M1 takes O(Vfm + 'v) time (see Papadimitriou and Stieglitz (1982), Theorem 10.3). Copying the
columns of M into a starting solution for the i th zero-section takes 0(m) time, and hence copying takes
O(m' ) overall. After copying .M into the it" zero-section, each remaining unmatched row in the zero-section
matches to a column outside the zero-section under 4. The number of initially unmatched rows in the th
zero-section is at most the number of non-zeros in row i of A, and -A) Lhe total number of unmatched rows
is at most v. Each unmatched row can lead to at most one augmentation of a matching, so that the total
number of zero-section augmentations is at most v. An augmentation is an O(P) process, making the total
time spent in zero-section matching O(V2 ). Finally, each entry of 4 can be eliminated at most once (when
its row is processed); therefore, a single augmentation of .M might be needed at most m times. Again each
augmentation takes at most 0(v), for total time O(mv) spent repairing . Therefore the total time bound
for the combinatorial running time of SA and SSA with warm-start matching is 0(0 2 ).

it is more difficult to obtain an accurate bound on the numerical running time of SA and SSA. In the
worst case, even with the restricted coluni| option, the algorithms have to factor and solve a linear system of
size 0(m) for each of m rows (plus once at the beginning to obtain a bwsis for A). Since factoring and solving
one such system is bounded by 0(m 3 ), an overall numerical bound is 0(m 4 ). However, since A is sparse, the
systems to be solved are also sparse. An efficiently implemented sparse equation solver like MA28 tends to
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solves such systems in time 0(v) (see Duff (1977), Table 3), which would give the much better overall bound
of O(mv) for numerical operations.

As a final observation on applying the algorithms to practical problems, note that linear constraints are
usually not presented as a system of equations as in (3.1.3), but as a mixture of inequalities and equations.
Inequalities can be converted to equalities by adding a slack variable, so that the constraints are then in a
form which is suitable for the algorithms. However, there is another modification that can be used to save
time when inequalities are prescnt.

First, note that an inequality row i can never be used by another row, because its slack column (a unit
vector), is in the zero-section of every other row. It can be assumed without losis of generality that the
maximum matching in each such zero-section includes the slack entry. Since all other entries in the slack
column are zero, there is no way for row i to be labelled during the matching in that zero-section. Thus row
i is in the U of no other row. (But row i can itself be reduced by other rows during the algorithm.) Indeed,
whenever a row i has a non-zero in a column which is a unit vector, row i is never used by any other row.
Thus, if A contains an embedded identity matrix, the algorithm does not reduce A at all.

Given that the slack columns do not participate in the matchings, it is more efficient to create a
single "phantom" column (column 0), instead of many slack columns. In using warm-start matching, all
the inequality rows can be permanently matched to column 0 before finding M. If column 0 is artificially
included among the columns of every zero-section, all the inequality rows initially match to column 0 in
the zero-section since .M is used for an initial matching. Since column 0 contains no non-zeros, it is never
labelled during computation of a matching in a zero-section. Therefore, none of the inequality rows is ever
labelled either, so that the inequality rows are automatically not used. Furthermore, since the inequality
rows stay matched throughout the process, this strategy effectively reduces the size of the matching problem
in each zero-section.

More :mr)ortantly, the inequality rows can be excluded from A in determining its rank at the beginning,
because ineq-Jality rows always have full rank and are never used anyway. Therefore, the square full row
rank submatrix ARC obtained from the initial LU-factorization excluding the inequality rows is suitable
for using the restricted column option, and C is even smaller. These strategies for treating inequalities are
called phantom slacks. By using phantom slacks numerical execution time can be even further reduced.

The disadvantage of inequalities is that, by decreasing the number of rows available for use, they lead to
smaller reductions of non-zeros. The extreme case is that when all constraints are inequalities, the algorithm
is not able to eliminate any non-zeros. A general rule of thumb for using SA and SSA is that the higher the
proportion of equality constraints, the better.

Finally, potential implemnentors are reminded that as the rows of A are transformed, the saree transfor-
mations must be applied to the right-hand side(s) b. However, any RANGES or BOUNDS (see Murtagh (1981),
Section 9.2) do not need to be changed.

3.5. Computational Results

In this section we shall first describe the implementation of an experimental version of the algorithms
of Section 3.4. Some preliminary computational results from the implementation are then discussed.

3.5.1. An Experimental Implementation of the Algorithm

The experimental implementation of SA and SSA is a FORTRAN program called 9PARSEt. The program
reads A in industry-standard UPS format (see, e.g., Murtagh (1981), Section 9.2), processes it by one of
several variant, algorithms (depending on its input parameters), and outputs the reduced A in UPS format if
desired. The UPS input routine is a modified version of the routine used by MINOS (see Saunders (1977)),
which uses {Brent's (1973) version of double hashing to reduce time spent in row look-up.

The two biggest tasks for SI'ARSI, R are computing maximum cardinality matchings in various sub-
matrices of A, and comnpnting the LU-ractors of various rectangular submatrices of A (and solving the
resulting s(quare subsystems). The maltching is performed by a modified version of a depth-first search
look-ahead tA'chnique, as described in Ctistavson (1976). 'rhongh this algorithm has poorer worst-case per-
formance than the llopcrort. and Karp (1973) algorithm, creators of sparse matrix software have empirically
observed that its average performance on typical real problems is better than other algorithms. The lack of
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a realistic random model of sparse matrices has prevented any attempt to provide theoretical support for
this observation.

As mentioned in Section 3.4, the numerical tasks in SPARSER are handled by MA2h, a package of sparse
matrix LU-factorization and linear equation-solving routines written by Duff at Ilarweli (see Duff (1977)).
The advantage of using MA28 for SPARSER is that it can process rectantigular Inatrices. This feature is
important because the only practical way to choose column subset G from Ali. (or from Au(.. if using the
restricted column option of Section 3.4) is to factor all of Au., which lets ( be dynamically specified by
the choice of pivot columns. MA28 uses a hybrid method for choosing its pivots ased on a pivot stability
parameter U which controls the trade-off between stability and sparsity. Setting U - 1.0 makes MA2s chose
pivots purely on the basis of stability; choosing U = 0.0 makes it choose pivots purely on the Markowitz
sparsity criterion (see Markowitz (1957)). The value U = 0.1 is recommended in Duff (1977) and was used
in all tests reported herein. The value of U can be set by an input to SPAR61-At.

MA28 has other parameters of interest to designers of SP algorithms. When M A28 parameter LBLOCK is
.TRUE., MA28 block-triangularizes its input (finds the DM decomposition of a square submatrix) before it is
factored. When the chosen submatrix decomposes into relatively siiall blocks, time can be saved since it is
cheaper to factor many small matrices rather than one big one. iowever, decomposing a submatrix can be
dangerous when the matrix is rectangular.

Vor example, within SPARSER, the matrix Au. (or Auc) (which is known to have rank ,Ul) is input to
MA28. When MA28 performs a block-triangularization, it first finds a maximum matching M in the matrix,
which must also be of size IrF1. The difficulty is that MA28 forces itself to factor the size U. square submatrix
B induced by M, and it can happen that rank B < jUj. This possibility once again illustrates the reason
why SA is preferred over PA: real matrices do not always have full numerical rank when they have a perfect
maximum matching. A retry function within SPARSER overcomes this difliculty by deleting the column
that MA28 indicates is dependent and re-factoring, but doing this slows SPARSER down. Thus, although
SPAlSt includes a way to change LBLOCK, it is strongly recommended that block-triangularization be
disabled.

Another MA28 parameter of interest controls the solution routine and is called fTYPE. If the input matrix
is II and the right-hand side is b, then MTYPE controls whether fix == b or zlB = 6 is the system to be solved.
Since SPARSER needs the solution of XuAu, = -AIC, it would seeni that MYPE should be defined so that
the second option is always taken. However, SPARSER subsumes MTYPE into a parameter of its own that
controls which one of Au.° or A7. is input to the factor routine, and that selects the appropriate value of
MTYPE accordingly. This option allows experimentation to determine whether it is faster to factor rectangular
matrices with the smaller or the larger dimension first within SPARSER.

Two parameters particular to SPARSER are relevant here. The first specifies which algorithm is used
to process A. When describing algorithms, "comnbinatorial" means that an algorithm is applied formally
to the sparsity pattern of A, without performing any numerical operations. A combinatoriai algorithm is
of use only as a fast way to determine the performance of an algorithm on a given matrix; since only the
sparsity pattern of the reduced matrix is correct, not the numerical values, the reduced matrix cannot serve
any further useful purpose. By contrast, "numerical" means that numerical operations arc performed, so
that the reduced A is equivalent to the input A.

With this understanding of terms, SPARSEIt allows four algorithmic options: combinatorial PA, com-
binatorial SA, numerical SSA, and numerical SA. The first two options are mainly used verify the correctness
of SPAiRSER as it evolves; by Theorem 3.3.4 they should always give the same final number of non-zeros.
They are also useful for quickly checking a new matrix, as noted above. The third alternative is SSA as
described in Section 3.4, with the guarantee of Theorem 3.4.2. The fourth alternative is SA without the
phantom non-zeros safeguard of SSA that allows Theorem 3.4.2 to he applied.

All versions of the algorithm use warm-start matching and phantom slacks as described in Section 3.4,
but the restricted column option is a user-selectable option. The trade-off between decreased stability and
smaller execution time with tie restricted column option can then be tested.

Four parameters govern how A is processed by SPARtSEit, each with two values: SA can be run with

safeguarding or not, block-triangularization or not, factoring A or AT, and using the restricted column
option or not. Thus there are 16 variant algorithms available through SPAILSER.

I.U
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Red. Block Factor Use Total Total Max Total Max No.
Col. A-ize? Transp. Safe- Time Gain CGrow Used Used 'Reinat-

Opt.' A? guard?- chings

N N I 2.32 6441 194 751 35 7

N Y 2.301 645 194 753 35 6

2.41 6451 194 761 371 7

N Y 2.41 6461 194 763 37' 6

N N 3.32 648 1.551 751 35 it,
Y Y 3.31 649 1.55 753, 35, 10

Y N 3.26 r  641 194! 750 35; 10

* Y 3.26' 6421 194: 752! 35 9

N' N 1.75! 642 194' 7511 35i 9

N Y 1.75 643 194 753 35, 8

Y N 1.83 642 194 756] 36 9

Y Y 1.80 643 19 75 36 8SI I -!
N N 1 2.34 642 6.72; 755! 361 12

Y Y 2.39 643. 6.721 7571 36 it

Y N 2.35 641 194 750! 351 10
i y Y 2.39 642, 194! 752

Table 3.5.1

3.5.2. Testing the Variations of SPARSER

Each or the 16 variations of SPARSER was used to process a linear programming matrix called BARDM.
These runs held all other minor parameters fixed, and in particular set all print flags to their lowest level and
disabled UPS output of the reduced matrix, to allow the execution time to reflect only the basic processing.
The matrix of BANDM has m = 305, n = 472 and contains 2494 non-zeros, a density of 1.73%. It has 305
equality rows. 100% of the total. The combinatorial number of non-zeros that can be eliminated from BANDM
(the guarantee of Theorem 3.4.2) is 633, which is 22.8% of the total non-zeros (an impressive figure).

The results of these runs are displayed in Table 3.5.1. All testing was performed while running SPARSER
interactively ofn VM on an I1M 3081 at the Stanford Linear Accelerator Center. The "total time" is in CPU
second. wh'h- running SPARSR interactively on VM. The "total gain" column adds the lucky hits and

* lucky non-fill-ins (each one a proof that (MlP) is not satislied) to the guaranteed combinatorial gain of 633
non-zeros. Column "max grow" gives the maximum value over all rows of an MA28 output parameter called
CROW. The value of CROW estimates the extent to which the numerical operations on a row cause the entries
of A to "blow up" numerically, and so provides an indirect measure of the stability of the reduced matrix
relative to the original matrix (see Duff (1977), pp. 17-18). Column "total used" gives rfUjf, an indication
of the sizes or the livear systems that were solved within SPARSIER, and "max used" gives maxi 'h, which
helps to indicate wh(,ther most of the gain is coming from a few rows ("max used" nearly as big a total
used) or is "pread ot ("max used" very small). Finally. "no. rematchings" reports how many times out of
the 305 equality rnw- an ('ntry of the fixed matching was hit, necessitating repair.

Starting 'rom the !es important conclusions that can be drawn from Table 3.5.1, there seems to be
little significant di(Terenre among the 16 variations of the algorithm on any of the last five columns, with two
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possible exceptions. First, "max grow" varies from 1.55 to 194, which riight indicate that soie variations
art inherently more stable than others. llowever, our experience has been that a value of 194 for "max grow"
is no cause for concern, and we conjecture that the lower values of "max grow" resulted rore from luck than
any fundamental differences among variations. Second, there appears to be a slight, trend for t,he number of
rematchings to increase when using block triangularization. ilowever, this possible d.ficlency pales beside
the other flaws of block-triangularization, as shown by the results below.

There seems to be only random variation in total gain (from 641 to 649), the stated ohjective. A pattern
|might possibly emerge if the 16 variations were run on a different niatrix for which lucky gains were a bigger
part of total gain than for BANDM. It is shown later that BANDM has an atypically small auioulit of lucky gain.
This issue will be tested further in the future. The only remaining criterion by which to judge tiw variations
is their execution times. There is a definite spread of time; the longest time is 3.32 seconds, LmiosL twice
the shortest, 1.75 seconds.

Safeguarding or not makes very little difference in time according to Table 3.5.1, Lhough again this might
change with a matrix with more lucky gain.

Factoring submatrices of A in their normal (as opposed to transposed) form appears to be rt'Ler for this
application, despite the opposite advice of the author of MA28. That is, factoring submatrices ol BANDM with
the smaller (row) d,.iension first was faster, though Duff (1977, p. 28) suggests putting the larger dimension
first. The apparent exception to this observation is that without the reduced column option and witl block-
trianguilarization, in which case factoring the transpose is faster (see Table 3.5.1). This anomaly s'ers to be
due to the fact that in both of the cases when submatrices were normally factored, block-triangularization
caused difficulties by selecting singular matrices four times. The retry routine then caused four extra linear
systems to be solved, tipping the time balance to factoring the transpose, which had no bad iucl with block
triangularization.

Besides its other flaws mentioned above, using block-triangularization on BANDM makes si'ARSELt run
more slowly. This result is initially surprising, since block-triangularization is supposed to speed up solving
elulations. An explanation for this behavior can be found in the "total used" column of Table 3.5.1. Since
BANDM has 305 rows, and "total used" is roughly 755 rows, an average of less than 2.5 otLher rows are
,used per row of BANDM. Thus the linear systems passed to MA28 are already quite small, so that tle block
triangularization code adds an overhead greater than any possible savings. lven the supposed v,rtue of block

. triangularization is a flaw, therefore its use in SIPARSl'R is discouraged more severely than before.
" Finally, using the restricted column option leads to a big decrease in time (which is scarcely any .surprise).

Witho,,t it, MA28 is passed a matrix whose largest dimension is n - 472. Using the restricted cohuini option,
the largest dimnension drops to the rank of the equality rows, which is 305 for BANDM, which is ;r decrease
of 35.4%. Since we suspect that numerical operations doninate SPARSER's processing time, such a large
decrease is bound to have a big effect on running time.

With these results in mind, the rest of the tests were conducted with no block triangularization, factoring
A in normal form, using the restricted column option, and using safeguarding. The last choice was made
only because it is better to be safe than sorry.

3.5.3. Testing SPARSER on Real Matrices

The next objective in testing SI'AIRSEIR was to apply it to a variety of real problems to see how well
it does in practice. We obtained 23 linear programming problems from Iarlan Crowder of the IBM 1'. J.
Watson Research Laboratory in order to investigate the performance of 1'AI.Str. They were selected solely
on the basis of having a high proportion of equality constraints, arid range in size from AFIRO (which is
27 X 32 with 83 non-zeros) to AIRFSTAR (which is 311 X 3637 with 10,513 non-zeros).

The results of running SPARSEI on these 23 problems are displayed in Table 3.5.2. The "rows" and
"columns" figures quoted include only those relevant to SI'AUSI';I (i.c., objective rows and right-hand
sides are excluded), and "non-zeros" counts only those non-zeros in relevant rows and colurnns. The "%
eq. rows" reports what percentage or the relevant rows are equalities; recall from Section 3.'4 that this

figure is potentially important in determining the performance of SPAItSEIt. Three of the matrices have
rank-deiciencies that effectively reduce the percent of equalil.y rowi in Table 3.5.2 (BOAC from 41.2 to 36.8;
CRACPB1 from 62.2 to 62.0; BRANDY from 75.5 to 72.0); the higher figure is used in Table 3.5.1 since it can be
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Name # or # or # or % Eq. Orig. % Red. L~ucky 1 Total Max.
Rows Cols. INon-Z.. Rows % )en. Non-Z. Fonh. Time Grow

AFIRO 27 321 831 29.6 9.61 0.00
1IOAC 3131 298 1659 41.2 1.78 0.00 1.97

,.,,5S2 271 1426 26481 827  0.69 0.00 ,.15

WEvERIISlI 41" 107 706 97.6 16.09 .85 0.201 .231 2.82

STORKSOS 68 5901 2784 86.8 6.94 2.44 .58 .84 829

ADI.I717l I" 56 97 1 3831 26.8 7.05 3.39 .08 I .23 45

FIF.aSNO 208 316 1791 47.1 2.72 3.46 .03 .55 10.6

L84MAV 113 1995 9126 99.1 4.05 4.95 3.07 5.621 0.0

1,1521) 931 1550 9862 98.9 6.84 7.16 6.76 2.281 0.0

U21A_ 108t 99.1 4.19 7.34 5.08 2.32: 1.0

CAPRI 2711 3531 1767 52.4 1.85 8.09 .01 .89 6.13

CRACPIIi 143 572 4158 62.2 5.08 8.37 2.871 1.77 0.0
SHAR,'21, 96 79 1 694 13.5 9.15 8.50 .23_ .251 651.. .. ...I 96 -!,s .z,! 3. ! 650

1,271,AV 146 2655! 11,203 99.3 2.89 8.84 5.78 3.99 1.0

N"226 223 282 2578, !4.9 4.10 9.00 1.971 .58 1 1.0
S11AREIB!11 8 US 22.5 1151 75. 4 4.37 13.47 .12 1 .551 1810

BRANDY! 2201 249 2148 75.5 3.92 14.15 .30 .95 45.5

AIRISTAR: 311! 36:17 10,513 99.0 .93 14.61 21.261 3.35 1.0

LI521AV' 97 1999 99.0 5.14 16.11 15.821 2.46 1 1.0

1,I4,. 85- 108 4677 98.8 5.07 17.96 9.121 1.501 1.0

1,94 MAV 93! 1750, 7294 98.9 4.48 21.02 15.85 5.49 0.0

IBAN)M, 305 472 2494. 100.0 1.73 25.78 .02 2.0,11 194

BEACONFD: 173 262 3375 80.9 j 7.45 64.06 .80 1.05 136

Table 3.5.2

determined without running SPARSER. The "orig. density" is the density of the original matrix, based on

relevant non-zeros, relevant rows arid relevant columns.
The linear programs in Table 3.5.2 are listed in increasing order of "Yo deer. in non-zeros," which is

the total reduction in non-zeros achieved by SPARSER (both combinatorial and lucky) as a percentage or
relevant non-zeros. It ranges from zero for the first thrcc matrices, to an astounding 64.06% reduction for
BEACONFD. The "."' colmm lists the relative contribution or combinatorhal gains and lcky gains to the

total gain. For examph. BANDM had a combinatorial gain or 633 non-zeros and a lucky gain of 10 non-ze, s,
for a ratio of 10/633 -- .02, the second-smallest value listed. The "total time" and "max grow" columns
have the same meaning Lq in Table 3.t) I. The discrepancy in time for BANDM between Tables 3.5.1 and 3.5.2
is due to the fact that the two sets or riins which are summarized in the tables were done several months
apart. Tus times are comparable within tables but not between tables.

The runs summarized in Table 3.5.2 produced other interesting statistics. First, the total number of
renatchings over all 23 linear programs was only 44, with BEACONFD alone accounting for 23. Thus, having

to repair the lixed matchingl, in wartrr-start matching does riot result iii large additional overhead. On a
related noole. wheo the boin~d oiith," 'onibinatoriai rui,ning time or1" IARtSI.R with watrmistart matc'hing

was computed in Sertion 3.4. a key fact that was used is that the number of unmatched rows (after copying
the fixed matching) is bounded by the nituber of non-zeros. In practice, the number of unmatched rows
averaged out a. les than 12% of the rnon-zeros.
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The total used for each linear program reveals that the average III, for the 23 problems w..s only 1.06
Comparing the "conibinatorial gain" and "total used" figures shows that each used row leads to a gain of
.92 non-aeros on average. Recall that, by Theorem 3.2.2, each used row can make a combinatorial gain of at

most one non-ztero. Although saved and fill-in columns must be taken into aCcount to derive the algorithm,
in these runs they are rare events.

Many of the "lucky/combinatorial" figures may seem surprisingly high, but examining "max used" versus
"total used" reveals the explanation. For seven of the eight linear programs with "lucky/combinatorial" > 3
(all except for AIRFSTAR, where "max used" is 4), "max used" is equal or nearly equa to "total used". This
indicates that almost all of the total gain is achieved at one row. All seven of these lucky linear programs
(those whose name starts with L) h;ave one nearly dense row. The dense row is Wie only on(% with a non-empty
U,, and the matrices are structured so that cancelling out some of the not-zeros in the (lenhe row also luckily
cancels out nearly all the rest.

A high value of "lucky/combinatorial" may be caused by other special structures as well. When using
SPARSER in practice, a high value of "lucky/combinatorial" could indicate that a more specialized method
might be more appropriate than SPARSER. Despite having no provision to exploit such structure, SPARSER
achieved creditable reductions on the lucky matrices anyway.

'rlme results in Table 3.5.2 show that SPARSER can significantly reduce many matrices. The degree of
reduction does riot appear to be predictable front percentages of equalities or of density The running time of
SI'ARSFit seems to be quite modest. Its large value on the lucky matrices is dominated by the time needed
to determine the rank of the equality rows. Since the lucky matrices have an unusually large number of
coluumns relative to rows, MA28 is required to factor an apparently huge matrix. Choosing to factor the
transpose of such matrices might prove to be faster. The "max growth" in the reduced matrices was quite
small for most of the linear programs.

3.5.4. Optimizing Reduced Matrices

Encouraged by the success of SPARSER in reducing this set of matrices, the 15 problems with reductions
of at least 5% (the ones below the heavy line in Table 3.5.2) were tested in comparattive optiimlization runs.
The optimization program MINOS (see Saunders (1977)) was chosen for these test runs. MINOS is a high-
quality transportable FORTRAN routine for solving problems of the type (3.1.1). It uses state-of-the-art

sparse matrix techniques and is in daily use on the SLAC computer for solving a large energy model linar
program (see Dantzig et al. (1981)). Rather than having SPARSEIL pass an internai representation of the
reduced matrix to MINOS, SPARSER output an MF file of the reduced matrix which was then used as the
input for MINOS.

It is riot easy to compare the time used by MINOS to optimize an original versus a reduced problem. The
Simplex Algorithm follows the sarne pivot sequence on both A and TA if T is non-singular, except possibly
in Phase 1. The reason is that when Phase I adds artificial variablcs to A and TA, it obtains (A I) and
(TA I), which are no longer equivalent. Thus Phase I can follow a different pivot sequence on the reduced
problem than on the original problem, which would result in different initial feasible bases for Phase II. The
overall result is a different pivot sequence and a different number of iterations before optimality, making
comparison difficult.

We have attempted to circumvent this problem by starting both thc original anid reduced problems
with the same feasible basis. This basis is obtained by running MINOS on the original problem until the
first feasible basis is obtained. Then, in theory at least, both tie original aid reduced problems follow the
same pivot path to optimality, so that any time differences can be attributed solely to increased sparsity. A
drawback to this approach is that there are fewer iterations over which the cost of running SPARSER can

be amortized.
Also, it is important to know whether reduced problems have any hias towards taking mnore or fewer

iterations than original problems. Before we became aware of the I'ha.se I difficulty discusscd above, several
pairs of original and reduced problems were optinized starting from a (non-equivalent) crash basis. No
consistent bias in iterations was observe(, but more formally organized experiments are needed to determine
whether this is holds in general.

The results of the comparative MINOS runs are summarized in Table 3.5.3. The "% redn." column is
copied from Table 3.5.2. The "orig. time" and "reduc. time" columns give the total time, in seconds, for

II
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7E Name % Redn. Orig. Reduc. I% Redn. % Redn. [tn.
in Non- Time Time in Time in Time Ratio
Zeros (see.) (see.) (corr.) (uncorr.) (or/red)

1L152D 7.16 8.42 7.8 3.98 5.06 1.04

L21LAV 7.34 9.81 9.38 4.18 4.94 1.00

* CAPRI 8.09 2.04 2.00 1.25 2.19 1.00

CIRACPBl 8.37 2.70 1.93 -7.39 -4.69 1.62

SIIARE2B 8.50 .55 .53; 8.10f 9.57 .95

1,27LAV 8.841 12.72 1 12.60 .10 107 1.00

E226 9.00 7.04' 6.80' 3.201 3.57 1.00

SIIAREIB 1 13.47 1.71 1.61 5.21 6.36 1.00

BRANDY 11.15 2.131 1.98 6.16 7.92 1.00

AIRFSTAR 11.61 5.83 [ 5.90 6.87 10.50 .88

1,152LAV 16.11 7.95! 6.84 .19 3.20 1.16

LP4L 17.961 3 .8 0! 3.32 5.94 8.84 1.07

L94MAV 21.02 6.36 6.28 9.17 1i.65 .90

13ANDM 25. 78 1 4.31 3.68' 13.871 15-76 1.00

BEACONFD 64.06[ .90: .63 9.42 49.17 1.00 I

Table 3.5.3

MINOS to solve the original and reduced problems respectively, starting from the same initial feasible basis,
with MINOS running as a batch job on VM.

The last colum, of Table 3.5.3 gives the number of iterations for the original problem divided by the
number of iterations for the reduced problem. It shows that starting the original and reduced pr6blems at
the same feaible basis does not always produce the same number of iterations in practice; where they differ,
there is no discernible bias favoring either the original or reduced problem.

Columns 5 and 6 of Table 3.5.3 give estimated percent reductions in the time required to bring the
starting feasible basis to optimality. An estimate (derived from SPARS!HR) of time spent inputting the MPS
file w:a subtracted rrom the times reported in columns 3 and 4, in order to make the comparison more nearly
refl-ct actual differences in time per iteration (the actual time spent iterating in MINOS is not currently

available). The time spent in MPS input depends on the size of the linear program. Since a matrix reduced
by SPARSEIt can= Irave considerably Fewer non-zeros than the original matrix, inputting a reduced MPS file
can take les time than inputting the original UPS file. The ups input time used to calculate the percent

reduction in column 5 has been "corrected" by the ratio of number of reduced non-zeros to the number or
original non-zeros to try to account for this difference. The percent reduction on column 6 has not been so
corrected.

More formally, denote the total original optimization time from column 3 of Table 3.5.3 by 07', the
total reduced time from column 4 by RT, the UPS input time from SI'AItSI.I by IT, and the iteration ratio
from coluin 7 by r. Then the value in columns 5 and 6 is

loo. (o7'- IT)- r(ir-f .17')
07' - IT

where f is the ratio of original to reduced non-zeros for column 5, and is I for column 6. We believe that
the true percent reduction in time lies between the values in columns 5 and 6.
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The results in Table 3.5.3 show that reducing the number of [ion-zero. in these problems does indecu
reduce the time needed to optimize them. Though the results have a large atinaii of variabibLy, as a rule of
thumb it appears that the percent reduction in iteration time is about half Lhe percent reduction in non-zeros.
In this light, these results are encouraging since they bear out the hope that problems with sparser matrices
can be optimized faster. Moreover, SPARSER is sufficiently effective at increasing sparsity that the CPU
time noticeably decreased.

But it is discouraging to cornpare the difference in original and reduced MINOS times in Table 3.5.3 with
the SI'ARSER times in Table 3.5.2. In no case is the SPARSER Lime stmaller tlhan twe overall time saved l.,
MINOS. Pre-processing matrices to reduce optimization time is not helpful if Lhe time saved is -inaller then
the time spent in pre-processing.

There are several factors that convince us that our algorithm will eventually prove to be practically
useful in spite of its apparently unhelpful behavior in these experiments. One factor is that the lnear
programs that were tested are relatively small and solve relatively quickly Another factor is that because
of the way the experiments were set up, the reduction in time counts only tti- Phase 11 iterations, which
typically are about half of the total iterations from a cold start.

The tte taken by the algorithm should grow more slowly with increasing problem size than the time
taken by an optimization routine. For example, Ilillier and Lieberman (1974). p. 181, scate that the solution
time of linear programs is usually 0(m'), whereas, as stated in Section 3.4, SPARSER uses only 0(mn 2 ) time.

Thus SPARSEIt would perform better on larger problems. Also, pre-processing with the algorithm is a fixeo
cost that saves time at every iteration of anl optimization, and hence woui(I De of higher utility on more
difficult problems that take relatively more iterations. For example, the iucky ainear programs are actually
integer programs. Solving integer programs typically involves solving the associatea linear program many
times, in which case the algorithm would be more useful.

The current, experimental version of SPARSER spends some time (tebugging itself and accumulating
statistics on its performance. A more streamlined implementation would be faster. Also, outputting a
reduced UPS file from SPARSER for input to MINOS is inefficient. A more re;alistic implementation would
integrate SPARSEIL into MINOS, thereby eliminating the unnecessary lile-handling time.

On balance, the tests show that increasing sparsity is possible and that it reduces the time needed to
solve a problem. It remains to be shown (by more extensive testb) whether our algorithm is a practical way
of increasing sparsity. The test results so far are not overwhehmingly encouraging, but they do suggest that
a streamlined version of SPARSER may prove useful.

3.6. Conclusions and Extensions

In the preceding sections we have argued that the Sparsity Problem is itv portant, and one way to attack
it has been explored. The key to our approach is that by assuming the Matching Property, the One Row
Sparsity Problem can be solved (as shown in Section 3.2). The resulting One Row Algorithm is at the heart
of the subsequent development.

The Parallel and Sequential Algorithms of Section 3.3 are not much more than clever ways of applying
the One Row Algorithm to each row. Proving their correctness is not trivial, but some interesting theoretical
results are obtained in return.

Sectio 3.4 shows that additional eflort is required to bring the Sequential Algorithm t4) a point where it
can be applied to real-life matrices. The practical algorithim described there se ems to work reasonably well

judging by the computational results in Section 3.5, but different and possibly better ways of implementing
the algorithm are possible.

One possibility is a two-pass algorithm that separates the combinatorial and numerical parts of the

algorithm, as follows. Theorem 3.3.1 implies that the parallel i: induce an ordered decomposition, the SP
Decomposition, on the rows of A (see Section 3.3). The SP )ecom position can be found by applying PA
purely combinatorially to A and observing the sparsity paltern of T.

__ The proof of Theorem 3.3.2 shows that the effect of T" on A is to transform "diagonal blocks" of A
(with respect 1A) some matching) into diagonl; s ubmnatrice., and "subdiagon'd blocks" (with respect to the
same matching) into zero submatrices. The pattern of these diagonal and zero blocks is closely related to the
sparsity pattern of T ° (see the example in the proof of Theorem 3.3.2). What is happening is that the fixed
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matching picks out a square submatrix I of A. The matrix T* is composed of various pieces of B - 1, the
particular pieces being determined by the SP Decompisition of A. Thus A - T'A is tile result of performing
only part of the Gauss-Jordan reduction of A that turns B into a diagonal matrix.

Since the SP Decomposition can be determined combinatorially, it can be known in advance which
part of the Gauss-Jordan reduction of A to perform. Instead of letting a fixed, combinatorially-chosen
matching determine the submatrix B at the start, a partial Gauss-Jordan elimination could be performed
with dynamic, numerically-controlled pivot choices. The pivot choices would then implicitly determine the
submatrix B, but only after the numerical operations. Such an algorithm would clearly be theoretically
optimal since it eliminates as many non-zeros from A as PA does.

More importantly, a two-pass algorithm is also practically implementablc. Since its operations are driven
by numerical choices rather than by combinatorial choices, no difficulties would be encountered in applying
it to matrices without (Ml'). It might also have an advantage in efficiency over SA.

To see how such an advantage would arise, note that the goal of Gauss-Jordan elimination is to reduce
the partitioned matrix (B C) (where B is square and non-singular) to (I B-C). In the dense case,
Gaus-Jordan elimination takes O(n 3 ) operations. The Sequential Algorithm way to achieve the reduction
is to solve for the multipliers that reduce each row separately, even though the multipliers are interrelated.
Since one such solve uses 0(n 3 ) operations in the dense case, this would give an O(n4 ) algorithm overall.
Similar savings might occur in the sparse case as well.

There are two difficulties with the two-pass algorithm that have prevented its implementation and
comparison with SA. The first is that we prefer a more elegant way of computing the SP Decomposition
than running PA combinatorially. The whole point of the SP Decomposition is that the U: are themselves
interrelated, and hence there should be a way to use the relationships to help compute the U.. The
ideal algorithm would globally develop the SP Decomposition, rather than generating it row by row as
the combinatorial PA does. It would be esthetically pleasing if the combinatorial phase were to parallel the
block (as opposed to row by row) nature of the numerical phase. However, such am algorithm is not yet at
hand.

The second difficulty is that a practical implementation of the two-pass algorithm would require its

own numerical subroutine to perform the partial Gauss-Jordan reduction. The existence of MA28 allowed
implementation of SPARSER in a relatively short period of time. (Indeed, a private communication with Duff
reveals that SPARSER is the only application of the capabilities for solving rectangular systems in MA28 of

which he is aware.) Writing such a piece of software so that it is efficient, takes full advantage of sparsity
and is numerically stable is a monentous undertaking.

There is another possible strategy which may improve the practicality of the algorithm. The sparsity
of A is globally improved in the hope that on average the bases are then sparser. The objective of the
Sparsity Problem implicitly assumes that any column is equally likely to appear in a basis. In some situations
there is a priori knowledge about which columns are more likely to appear in a basis than other columns.
Past experience or physical considerations of a model might lead to such knowledge. Alternatively, in an
optimization with many iterations, the frequencies with which each column appears in a basis could be
recorded in order to apply an algorithim that can take advantage of such information in the midst of the
optimization. Such a strategy would allow the sparsity of A to be dynamically adjusted to reflect information
about the columns that are most active (luring a long optimizationl run.

In either case, the problem of interest is the Weighted Sparsity Problem (WSP). The WSP is the
same as the regular Sparsity Problem except each column has a weight which represents an estimate of
how likely that column is to be in a basis. The objective of WSP is to transform A into an A which has a
minimu|m weighted number of non-zeros. WSP is another area for future research.

As mentioned at the end of Section 3.5, the computational results are only indicative, not conclusive.
It would be very interesting to assemble a large collection of typical large-scale problems with which to test

SPARSER, and to addrts the following questions. Are the reductions achieved by SPARSER in Table 3.5.2
typical? Is there any association between the form of m optimization problem and SIA ItSFR's performance
on it? (None appears obvious from Table 3.5.2, but perhaps there is a link with the source or the model or
form or the matrix.) Are the conclusions drawn from Table 3.5.1 still valid on other matrices, particularly
those with a higher ratio or "lucky gain" to "combinatorial gain?" Is there a stronger association between

reduction in no||-z7eros and speed-up in optimization time than is evident in Table 3.5.3? Finally, and most
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importantly, does SPARSER save more than it costs for large problems?
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